| 注册
首页|期刊导航|安徽农业科学|基于改进YOLOv7的番茄果实成熟度检测方法

基于改进YOLOv7的番茄果实成熟度检测方法

谭荣英 李小明 李军辉 宋一明

安徽农业科学2025,Vol.53Issue(12):193-195,3.
安徽农业科学2025,Vol.53Issue(12):193-195,3.DOI:10.3969/j.issn.0517-6611.2025.12.042

基于改进YOLOv7的番茄果实成熟度检测方法

Maturity Detection of Tomato Based on Improved YOLOv7

谭荣英 1李小明 1李军辉 1宋一明1

作者信息

  • 1. 北京农业职业学院智慧农业工程学院,北京 102442
  • 折叠

摘要

Abstract

To accurately identify the maturity of tomato target in facility environments,improve detection efficiency and quality,and achieve intelligent harvesting.An enhanced YOLOv7 model is proposed for detecting the maturity of target tomato fruits.This approach enhances the model's focus on the target regions of input data by integrating the CBAM attention mechanism;employing the Soft-NMS algorithm effectively prevents missed detections due to high-density overlapping targets being suppressed,thereby enhancing detection performance;optimizing the original loss function EIOU and replacing it with SIOU,the experimental results show that the improved YOLOv7 model has a detection preci-sion of 93.1%,a recall rate of 90.8%,and a mean average precision of 94.8%.Compared with the original YOLOv7 and YOLOv5 models,it has improved in detection precision,recall rate,and mean average precision,providing technical reference for tomato harvesting in complex environments.

关键词

番茄/YOLOv7/成熟度检测/目标识别

Key words

Tomato/YOLOv7/Maturity detection/Target recognition

分类

农业科技

引用本文复制引用

谭荣英,李小明,李军辉,宋一明..基于改进YOLOv7的番茄果实成熟度检测方法[J].安徽农业科学,2025,53(12):193-195,3.

基金项目

北京农业职业学院2023年度科技创新项目(XY-YF-23-07). (XY-YF-23-07)

安徽农业科学

0517-6611

访问量5
|
下载量0
段落导航相关论文