| 注册
首页|期刊导航|船电技术|基于卷积神经网络的滚动轴承故障诊断方法研究

基于卷积神经网络的滚动轴承故障诊断方法研究

蒋炜 王永兴

船电技术2025,Vol.45Issue(7):7-10,4.
船电技术2025,Vol.45Issue(7):7-10,4.

基于卷积神经网络的滚动轴承故障诊断方法研究

Research on rolling bearing fault diagnosis method based on convolutional neural network

蒋炜 1王永兴1

作者信息

  • 1. 武汉威迈新能源动力有限公司,武汉 430064
  • 折叠

摘要

Abstract

To improve the diagnostic accuracy and reduce the reliance on manual feature extraction,this paper proposes a rolling bearing fault diagnosis method based on Convolutional Neural Network(CNN).As a critical component,rolling bearing failures may lead to equipment malfunctions or accidents.Traditional methods have limitations,whereas CNN can automatically extract signal features for efficient fault identification.This study utilizes the CWRU dataset,preprocesses vibration signals(denoising,data augmentation,and time-frequency transformation),and constructs a multi-layer CNN trained with the ReLU activation function and Adam optimizer.Experimental results show that this method achieves a classification accuracy of over 98%across 10 fault categories and demonstrates strong robustness under complex working conditions.Compared with traditional methods,CNN enables more accurate and efficient fault diagnosis while reducing human intervention,highlighting its promising engineering applications.

关键词

滚动轴承/故障诊断/卷积神经网络

Key words

rolling bearing/fault diagnosis/convolutional neural network

分类

计算机与自动化

引用本文复制引用

蒋炜,王永兴..基于卷积神经网络的滚动轴承故障诊断方法研究[J].船电技术,2025,45(7):7-10,4.

船电技术

1003-4862

访问量0
|
下载量0
段落导航相关论文