| 注册
首页|期刊导航|电子学报|面向结构化稀疏感知的张量阵列信号处理

面向结构化稀疏感知的张量阵列信号处理

郑航 史治国 王勇 周成伟

电子学报2025,Vol.53Issue(3):1040-1062,23.
电子学报2025,Vol.53Issue(3):1040-1062,23.DOI:10.12263/DZXB.20240504

面向结构化稀疏感知的张量阵列信号处理

Tensor Array Signal Processing for Structured Sparse Sensing

郑航 1史治国 2王勇 3周成伟1

作者信息

  • 1. 浙江大学信息与电子工程学院,浙江 杭州 310027||浙江省协同感知与自主无人系统重点实验室,浙江 杭州 310015
  • 2. 浙江大学信息与电子工程学院,浙江 杭州 310027||浙江大学金华研究院,浙江 金华 321000
  • 3. 浙江大学信息与电子工程学院,浙江 杭州 310027
  • 折叠

摘要

Abstract

With the continuous construction of new information infrastructures,multi-dimensional array signal pro-cessing plays a fundamental role in the filed of radar,wireless communication,remote sensing and so on.Multidimensional array signals contain rich spatial/temporal/frequentiol/polarization parametric information,offering great economic and so-cial values.To deal with the problem of structural information loss inherent in traditional vector/matrix models,the tensor algebra has been adopted to effectively retrieve multi-dimensional signal features.However,as the dimension of signals in-creases,the tensor signal volume following the Nyquist sampling theorem exponentially expands.Unfortunately,computa-tion resources of the system are approaching the physical limit,resulting in computational overload and high latency.Con-cerning these issues,the sparse sensing theory has been developed to exploit the spatial sparsity of signals for sub-Nyquist processing.The extension from one-dimensional sparse sensing to multi-dimensional sparse sensing becomes a promising solution to efficient tensor signal processing.Meanwhile,by imposing structured sparse sensing paradigm such as coprime and nested sensing,the performance of the system can be enhanced via augmented coarray signal processing.Thus,to pur-sue the high economy of multi-dimensional array signal processing,this paper endeavors to the research on Structured Sparse Tensor Signal Processing for Sensor Arrays.In particular,the paper introduces the statistical theory of sub-Nyquist tensor signals.By deriving the augmented coarray tensor model and devising the corresponding strategy of source identifi-ability enhancement,this theory facilitates Nyquist matching in the virtual domain and underdetermined parameter estima-tion.Based upon this theory,this paper introduces a coarray tensor completion algorithm for sparse array DOA estimation,exploiting the full information of the discontinuous virtual array to achieve high accuracy and resolution.Meanwhile,this paper introduces a coprime tensor weights optimization algorithm for sparse array beamforming,which yields a beampatten with a sharper mainlobe and lower sidelobes,and increases the output signal-to-interference-plus-noise ratio.Furthermore,this paper introduces a resource-efficient tensorized neural network for robust sparse tensor signal processing,which com-pensates the performance deterioration for the model-driven methods in non-ideal conditions by efficiently learning tensor signal features.

关键词

多维阵列信号处理/张量信号处理/结构化稀疏感知/波达方向估计/波束成形

Key words

multi-dimensional array signal processing/tensor signal processing/structured sparse sensing/direction-of-arrival estimation/beamforming

分类

电子信息工程

引用本文复制引用

郑航,史治国,王勇,周成伟..面向结构化稀疏感知的张量阵列信号处理[J].电子学报,2025,53(3):1040-1062,23.

基金项目

国家自然科学基金(No.U21A20456,No.62271444) (No.U21A20456,No.62271444)

浙江省自然科学基金(No.LZ23F010007) National Natural Science Foundation of China(No.U21A20456,No.62271444) (No.LZ23F010007)

Natural Sci-ence Foundation of Zhejiang Province(No.LZ23F010007) (No.LZ23F010007)

电子学报

OA北大核心

0372-2112

访问量2
|
下载量0
段落导航相关论文