| 注册
首页|期刊导航|电子学报|满足地理不可区分性的偏好感知多对多任务分配算法

满足地理不可区分性的偏好感知多对多任务分配算法

张朋飞 翟睿辰 程祥 张治坤 刘西蒙 王杰

电子学报2025,Vol.53Issue(3):878-894,17.
电子学报2025,Vol.53Issue(3):878-894,17.DOI:10.12263/DZXB.20240938

满足地理不可区分性的偏好感知多对多任务分配算法

A Preference-aware Many-to-Many TAsk Allocation Algorithm Under Geo-Indistinguishability

张朋飞 1翟睿辰 1程祥 2张治坤 3刘西蒙 4王杰5

作者信息

  • 1. 安徽理工大学计算机科学与工程学院,安徽 淮南 232001
  • 2. 北京邮电大学计算机学院(国家示范性软件学院),北京 100876||网络与交换技术国家重点实验室(北京邮电大学),北京 100876
  • 3. 浙江大学计算机科学与技术学院,浙江 杭州 310058
  • 4. 福州大学计算机与大数据学院,福建 福州 350108
  • 5. 安徽理工大学安全科学与工程学院,安徽 淮南 232001
  • 折叠

摘要

Abstract

In spatial crowdsourcing,task allocation is a crucial prerequisite for subsequent location-aware data collec-tion.To tackle potential location privacy breaches,researchers often adopt geo-indistinguishability.Existing approaches that satisfy Geo-I are often designed for one-to-one scenarios,while implicitly assume that workers can perform any task,and they often focus on minimizing the average travel distance,rather than maximizing the number of task allocation.Further-more,these studies often incorporate the planar laplacian mechanism to achieve Geo-I.However,due to the randomness and unbounded nature of PL,it can result in excessive noise in the location data uploaded by workers,significantly deteriorating the utility of task allocation.This can lead to either long distances or unassigned tasks.To address these problems,we pro-pose MONITOR(Many-to-many task allOcation under geo-iNdIsTinguishability for spatial crOwdsouRcing),a new priva-cy-preserving task allocation approach for many-to-many scenario.The general idea of MONITOR is to upload the distanc-es from each worker's true location to the obfuscated preferred tasks'locations instead of uploading each obfuscated work-er's location.In MONITOR,to collect the distances for subsequent task allocation,we design an obfuscated distance collec-tion method,called GroCol(Group-based obfuscated distance Collection).To improve the utility for task allocation,we de-velop a parameter independent obfuscated distance comparison method called ParCom(Parameter-free obfuscated distance Comparison).To illustrate the effectiveness of MONITOR,we first theoretically analyze its privacy guarantee,task utility,and computational complexity.We then empirically show on two real-world datasets and one synthetic dataset that MONI-TOR share similar results to that of non-private task allocation about the number of assigned tasks,and reduce the average travel distance by more than 20%compared to the baseline approaches.

关键词

空间众包/任务分配/隐私保护/地理不可区分性/平均旅行距离

Key words

spatial crowdsourcing/task allocation/privacy protection/geo-indistinguishability/average travel dis-tance

分类

计算机与自动化

引用本文复制引用

张朋飞,翟睿辰,程祥,张治坤,刘西蒙,王杰..满足地理不可区分性的偏好感知多对多任务分配算法[J].电子学报,2025,53(3):878-894,17.

基金项目

安徽高校自然科学研究项目(No.2024AH050364) Natural Science Research Project of Anhui Educational Committee(No.2024AH050364) (No.2024AH050364)

电子学报

OA北大核心

0372-2112

访问量0
|
下载量0
段落导航相关论文