| 注册
首页|期刊导航|电子科技|基于多层特征增强的双分支图像去雾算法

基于多层特征增强的双分支图像去雾算法

陈清江 杨双

电子科技2025,Vol.38Issue(6):30-38,9.
电子科技2025,Vol.38Issue(6):30-38,9.DOI:10.16180/j.cnki.issn1007-7820.2025.06.005

基于多层特征增强的双分支图像去雾算法

A Dual Branch Image Dehazing Algorithm Based on Multi-Layer Feature Enhancement

陈清江 1杨双1

作者信息

  • 1. 西安建筑科技大学理学院,陕西西安 710055
  • 折叠

摘要

Abstract

In view of the problems of residual haze,local detail loss,contour blur in traditional image dehazing algorithm,a double-branch image dehazing algorithm with multi-layer feature enhancement is proposed.Considering the problem of detail loss caused by extracting global information,the two-branch structure is used to fuse the global feature and local feature to compensate for the lost local detail feature,so as to restore high quality fog free image.Global branch fuses multi-scale global information by expanding convolution with different expansion rates.Local branches extract the local texture and color of the image through continuous local detail enhancement blocks.Experi-mental results show that compared with other algorithms,the proposed algorithm significantly improves the PSNR(Peak Signal-to-Noise Ratio)value on the composite image residing in the public haze image data set RESIDE.Ex-periments in real scenarios and ablation experiments have also proved the effectiveness of the proposed method.

关键词

多尺度/注意力机制/特征增强/图像去雾/局部特征/大气散射模型/特征融合/残差连接

Key words

multi scale/attention mechanism/feature enhancement/image dehazing/local feature/atmospheric scattering model/feature fusion/residual connection

分类

计算机与自动化

引用本文复制引用

陈清江,杨双..基于多层特征增强的双分支图像去雾算法[J].电子科技,2025,38(6):30-38,9.

基金项目

国家自然科学基金(12202332) (12202332)

陕西省自然科学基础研究计划(2021JQ-495)National Natural Science Foundation of China(12202332) (2021JQ-495)

Natural Science Basic Research Project of Shaanxi(2021JQ-495) (2021JQ-495)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文