| 注册
首页|期刊导航|电子科技|一种基于支持向量机的宽带声谱故障监测方法

一种基于支持向量机的宽带声谱故障监测方法

竹小锋 白兴宇

电子科技2025,Vol.38Issue(6):39-44,6.
电子科技2025,Vol.38Issue(6):39-44,6.DOI:10.16180/j.cnki.issn1007-7820.2025.06.006

一种基于支持向量机的宽带声谱故障监测方法

Broadband Acoustic Spectrum Fault Monitoring Technology Based on Support Vector Machine

竹小锋 1白兴宇2

作者信息

  • 1. 浙江浙能兰溪发电有限责任公司,浙江兰溪 321100
  • 2. 杭州电子科技大学电子信息学院,浙江 杭州 310018
  • 折叠

摘要

Abstract

In view of the problem of condition monitoring of electromechanical equipment under complex back-ground noise,a wideband sound spectrum fault monitoring method based on SVM(Supported Vector Machine)is proposed in this study.Different from the traditional narrowband fault monitoring method based on acceleration sensor and vibration analysis,the proposed method uses a broadband acoustic sensor to collect the sound spectrum signal.Power spectral entropy and multiscale entropy computations are employed for background noise suppression and voice-print extraction.Based on SVM,the pattern recognition capability of SVM is combined with the background noise suppression capability of power spectrum entropy and multi-scale entropy.The proposed method has strong broad-band fault information picking ability,strong interference noise suppression ability,high equipment status information utilization rate,accurate voiceprint tracking and matching,and can accurately monitor and identify the operation faults of electromechanical equipment under complex background noise environment,which is verified by simulation and experimental results.

关键词

声纹识别/声谱分析/宽带匹配/状态监测/支持向量机/机电设备/故障监测/振动分析

Key words

voiceprint recognition/spectrum analysis/broadband matching/condition monitoring/SVM/electro-mechanical equipment/fault monitoring/vibration analysis

分类

计算机与自动化

引用本文复制引用

竹小锋,白兴宇..一种基于支持向量机的宽带声谱故障监测方法[J].电子科技,2025,38(6):39-44,6.

基金项目

国家自然科学基金(LZ22F010004)National Natural Science Foundation of China(LZ22F01004) (LZ22F010004)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文