| 注册
首页|期刊导航|哈尔滨工业大学学报(英文版)|Elevating Software Defect Prediction Performance Through an Optimized GA-DT and PSO-ACO Hybrid Approach

Elevating Software Defect Prediction Performance Through an Optimized GA-DT and PSO-ACO Hybrid Approach

Chennappan R Mathumathi E

哈尔滨工业大学学报(英文版)2025,Vol.32Issue(3):66-74,9.
哈尔滨工业大学学报(英文版)2025,Vol.32Issue(3):66-74,9.DOI:10.11916/j.issn.1005-9113.2024016

Elevating Software Defect Prediction Performance Through an Optimized GA-DT and PSO-ACO Hybrid Approach

Elevating Software Defect Prediction Performance Through an Optimized GA-DT and PSO-ACO Hybrid Approach

Chennappan R 1Mathumathi E1

作者信息

  • 1. Department of Computer Applications,Karpagam Academy of Higher Education,Tamil Nadu 641021,India
  • 折叠

摘要

关键词

software quality/particle swarm optimization/ant colony optimization

Key words

software quality/particle swarm optimization/ant colony optimization

分类

计算机与自动化

引用本文复制引用

Chennappan R,Mathumathi E..Elevating Software Defect Prediction Performance Through an Optimized GA-DT and PSO-ACO Hybrid Approach[J].哈尔滨工业大学学报(英文版),2025,32(3):66-74,9.

哈尔滨工业大学学报(英文版)

1005-9113

访问量0
|
下载量0
段落导航相关论文