| 注册
首页|期刊导航|化工学报|基于随机森林的超高温热泵系统特征重要性量化方法

基于随机森林的超高温热泵系统特征重要性量化方法

危俊卓 吴迪 王如竹

化工学报2025,Vol.76Issue(z1):336-342,7.
化工学报2025,Vol.76Issue(z1):336-342,7.DOI:10.11949/0438-1157.20241331

基于随机森林的超高温热泵系统特征重要性量化方法

Application of random forest algorithms to quantify feature importance in ultra-high temperature heat pump

危俊卓 1吴迪 2王如竹1

作者信息

  • 1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 2. 上海交通大学制冷与低温工程研究所,上海 200240||上海诺通新能源科技有限公司,上海 200241
  • 折叠

摘要

Abstract

In the context of decarbonizing industrial heat demand,ultra-high temperature heat pumps,serving as active thermal energy recovery systems,are emerging as pivotal technologies for energy conservation and emission reduction.These systems convert low-grade waste heat into high-grade thermal energy with minimal electrical energy consumption.While augmenting the number of heat exchangers and compressors and refining their layout have proven beneficial in boosting system performance,they inevitably introduce complexity,posing additional hurdles for system analysis and optimization.To address this,feature importance-based variable selection techniques offer an effective means of reducing data dimensionality and swiftly pinpointing crucial system components.However,traditional correlation analysis methods frequently falter in producing consistent results when data is missing.To overcome this limitation,this study introduces a novel method for quantifying feature importance using the random forest model.Analytical results reveal that the random forest approach demonstrates superior generalization abilities when applied to 100 datasets containing missing data,achieving a variance in feature importance quantification of 0.11505,notably lower than the 0.17055 variance attained with the correlation coefficient method.Moreover,the results indicate that coupling temperature is the primary determinant affecting system performance,thus identifying a key area for further optimizing system design.Additionally,the study finds that the influence of output temperature on system efficiency is less than 5%,suggesting the system's low sensitivity to variations in output temperature and emphasizing its potential for ultra-high temperature applications.

关键词

超高温热泵/随机森林/变量选择

Key words

ultra-high temperature heat pump/random forest/variable selection

分类

能源与动力

引用本文复制引用

危俊卓,吴迪,王如竹..基于随机森林的超高温热泵系统特征重要性量化方法[J].化工学报,2025,76(z1):336-342,7.

基金项目

国家自然科学基金项目(52306019,52036004) (52306019,52036004)

上海市青年科技启明星计划(24QB2704400) (24QB2704400)

中国博士后科技基金项目(BX2021175,2022M712040) (BX2021175,2022M712040)

化工学报

OA北大核心

0438-1157

访问量4
|
下载量0
段落导航相关论文