| 注册
首页|期刊导航|湖北汽车工业学院学报|基于无人机检测的轻量化YOLOv8路面病害检测算法

基于无人机检测的轻量化YOLOv8路面病害检测算法

郭锦波 王生怀 陈晓辉 王宸 张伟

湖北汽车工业学院学报2025,Vol.39Issue(2):1-6,18,7.
湖北汽车工业学院学报2025,Vol.39Issue(2):1-6,18,7.DOI:10.3969/j.issn.1008-5483.2025.02.001

基于无人机检测的轻量化YOLOv8路面病害检测算法

An UAV-based Lightweight YOLOv8 Algorithm for Road Disease Detection

郭锦波 1王生怀 1陈晓辉 1王宸 1张伟1

作者信息

  • 1. 湖北汽车工业学院 机械工程学院,湖北 十堰 442002
  • 折叠

摘要

Abstract

To meet the real-time and accuracy requirements of unmanned aerial vehicle(UAV)devices in delecting road disease,a lightweight detection algorithm based on an improved YOLOv8(LHP-YO-LO)was proposed.The RG-C2f module replaced the original C2f module to reduce computational re-dundancy,and a lightweight detection head Detect-T3G was designed to reduce the model's parameter count.In addition,a content-guided attention fusion mechanism was embedded in the neck network to enhance target detection accuracy in complex backgrounds.Channel-wise knowledge distillation was applied to compensate for the accuracy loss caused by lightweight optimization.Experiments on the road disease dataset RDD 2022 demonstrate that the improved model achieves a 3.4%increase in mAP50 compared to the original model,with parameter count and computational load reaching 1.76×106 and 3.9 GFLOPs,respectively,representing reductions of 41.3%and 51.8%compared to the origi-nal model.The improved model meets the real-time requirements for road disease detection UAVs.

关键词

无人机/路面病害/目标检测/YOLOv8/轻量级/知识蒸馏

Key words

UAV/road disease/target detection/YOLOv8/lightweight/knowledge distillation

分类

计算机与自动化

引用本文复制引用

郭锦波,王生怀,陈晓辉,王宸,张伟..基于无人机检测的轻量化YOLOv8路面病害检测算法[J].湖北汽车工业学院学报,2025,39(2):1-6,18,7.

基金项目

国家自然科学基金(52475557) (52475557)

湖北省重点研发计划项目(2021BAA056) (2021BAA056)

湖北省自然科学基金(2020CFB755) (2020CFB755)

湖北省教育厅重点项目(D20231806) (D20231806)

湖北省高等学校优秀中青年科技创新团队计划项目(T2020018) (T2020018)

湖北汽车工业学院学报

1008-5483

访问量2
|
下载量0
段落导航相关论文