| 注册
首页|期刊导航|湖北汽车工业学院学报|基于Transformer编码器的电动汽车低压蓄电池SOC预测

基于Transformer编码器的电动汽车低压蓄电池SOC预测

陈少辉 王思山 司华超 周昊夫 童乐言

湖北汽车工业学院学报2025,Vol.39Issue(2):25-29,34,6.
湖北汽车工业学院学报2025,Vol.39Issue(2):25-29,34,6.DOI:10.3969/j.issn.1008-5483.2025.02.005

基于Transformer编码器的电动汽车低压蓄电池SOC预测

State of Charge Prediction for Low-voltage Batteries in Electric Vehicles Based on Transformer Encoder

陈少辉 1王思山 1司华超 2周昊夫 2童乐言1

作者信息

  • 1. 湖北汽车工业学院 湖北 十堰 442002
  • 2. 岚图汽车科技有限公司,湖北 武汉 430100
  • 折叠

摘要

Abstract

To facilitate the prediction of the remaining capacity of low-voltage batteries in electric vehi-cles during operation,a method for state of charge(SOC)prediction for low-voltage batteries in electric vehicles based on the Transformer encoder was proposed.Real vehicle data was collected through a re-mote data acquisition platform.The K-nearest neighbors(KNN)algorithm was utilized to impute miss-ing values and eliminate outliers.A battery capacity feature database was subsequently established un-der scenarios of intelligent charging and static discharging.Battery capacity characteristics were ana-lyzed,and comprehensive experiments were conducted.Experimental results show that the prediction error of the proposed model is less than 2%.

关键词

Transformer编码器/电动汽车/低压蓄电池/容量特征/SOC预测

Key words

transformer encoder/electric vehicle/low-voltage battery/capacity characteristic/SOC prediction

分类

交通运输

引用本文复制引用

陈少辉,王思山,司华超,周昊夫,童乐言..基于Transformer编码器的电动汽车低压蓄电池SOC预测[J].湖北汽车工业学院学报,2025,39(2):25-29,34,6.

基金项目

湖北省重点研发项目(2023BAB169) (2023BAB169)

湖北汽车工业学院学报

1008-5483

访问量1
|
下载量0
段落导航相关论文