| 注册
首页|期刊导航|计算机应用与软件|基于远程监督的关系抽取数据降噪模型

基于远程监督的关系抽取数据降噪模型

马建红 李晓珑 陈亚萌

计算机应用与软件2025,Vol.42Issue(6):342-349,355,9.
计算机应用与软件2025,Vol.42Issue(6):342-349,355,9.DOI:10.3969/j.issn.1000-386x.2025.06.045

基于远程监督的关系抽取数据降噪模型

NOISE REDUCTION MODEL OF RELATION EXTRACTION DATA BASED ON DISTANT SUPERVISION

马建红 1李晓珑 1陈亚萌1

作者信息

  • 1. 河北工业大学人工智能学院 天津 300401
  • 折叠

摘要

Abstract

Aimed at the problem of error labeling in distant supervision,a new relationship extraction model is proposed.The model was divided into two parts:label learner and relationship classifier.The tag learner corresponded the reinforcement learning action to the relationship tag,explored the real tag of the instance through the deep Q network,and the corrected tag and sentence form new data to reduce the impact of noise on the model.At the same time,K-choice strategy was proposed to alleviate the problem of reward sparsity and improve the performance of relationship extraction.In addition,in the training process,the accuracy of label prediction was improved by calculating the contribution value of words in relation classification and mining trigger words.Experiments show that the model can deal with noise well,and has a good effect on sentence level relationship classification.

关键词

远程监督/关系抽取/强化学习

Key words

Distant supervision/Relationship extraction/Reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

马建红,李晓珑,陈亚萌..基于远程监督的关系抽取数据降噪模型[J].计算机应用与软件,2025,42(6):342-349,355,9.

基金项目

科技部创新方法工作专项项目(2019IM020300). (2019IM020300)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文