| 注册
首页|期刊导航|南京师范大学学报(工程技术版)|基于无监督域自适应和Transformer的视网膜图像语义分割

基于无监督域自适应和Transformer的视网膜图像语义分割

孙成富 李敏 邹佳辰 秦思奇 季嘉杰 孔维龙

南京师范大学学报(工程技术版)2025,Vol.25Issue(2):79-87,9.
南京师范大学学报(工程技术版)2025,Vol.25Issue(2):79-87,9.DOI:10.3969/j.issn.1672-1292.2025.02.007

基于无监督域自适应和Transformer的视网膜图像语义分割

Unsupervised Domain Adaptation and Transformer-based Retinal Image Semantic Segmentation

孙成富 1李敏 1邹佳辰 1秦思奇 1季嘉杰 1孔维龙1

作者信息

  • 1. 淮阴工学院计算机与软件工程学院,江苏 淮安 223003
  • 折叠

摘要

Abstract

To Address the challenges of semantic segmentation in retinal images with complex backgrounds,significant vascular structure variations,and edge information loss,this paper proposes an improved Transformer-based unsupervised domain adaptation(TUDA)method.Firstly,the model consists of an enhanced Transformer encoder and a context-aware feature fusion decoder.The encoder effectively handles complex interactions between different positions in retinal images by fusing local information.Secondly,to reduce the domain gap,an intermediate domain is introduced between the source and target domains,and a dual-teacher network is used for alternating training.Finally,high-resolution features are generated by using HRNet to preserve more edge information in retinal images.Compared to conventional medical image semantic segmentation methods,the proposed method achieves intersection-over-union(IoU)of 65.36%and 69.79%,and sensitivity(SEN)of 82.51%and 85.56%on CHASE_DB1 and DRIVE datasets,respectively,demonstrating superior segmentation performance.

关键词

语义分割/中间域/无监督域自适应/医学图像

Key words

semantic segmentation/intermediate domain/unsupervised domain adaptation/medical images

分类

计算机与自动化

引用本文复制引用

孙成富,李敏,邹佳辰,秦思奇,季嘉杰,孔维龙..基于无监督域自适应和Transformer的视网膜图像语义分割[J].南京师范大学学报(工程技术版),2025,25(2):79-87,9.

基金项目

国家自然科学基金青年科学基金项目(6200050273). (6200050273)

南京师范大学学报(工程技术版)

1672-1292

访问量0
|
下载量0
段落导航相关论文