| 注册
首页|期刊导航|南京师范大学学报(工程技术版)|基于数据挖掘和情感分析的欺诈软件检测方法

基于数据挖掘和情感分析的欺诈软件检测方法

刘雨晨 王闪闪 赵振宇 欧阳谨 陈贞翔

南京师范大学学报(工程技术版)2025,Vol.25Issue(2):96-101,6.
南京师范大学学报(工程技术版)2025,Vol.25Issue(2):96-101,6.DOI:10.3969/j.issn.1672-1292.2025.02.009

基于数据挖掘和情感分析的欺诈软件检测方法

Fraud Software Detection Method Based on Data Mining and Sentiment Analysis

刘雨晨 1王闪闪 2赵振宇 3欧阳谨 1陈贞翔1

作者信息

  • 1. 济南大学信息科学与工程学院,山东 济南 250022
  • 2. 济南大学信息科学与工程学院,山东 济南 250022||泉城实验室,山东 济南 250103
  • 3. 山东人才发展集团信息技术有限公司,山东 济南 250003
  • 折叠

摘要

Abstract

With the popularity of smartphones and the widespread use of mobile device applications,cybersecurity is facing unprecedented challenges,with fraud software emerging as a primary threat.Fraud software deceives users through false advertisements,deceptive content or fraudulent behaviours,leading to issues such as data breaches and financial losses,posing a significant threat to the information security of individuals and organisations.Therefore,this paper proposes a fraud detection method based on data mining and sentiment analysis,which comprehensively considers the visual characteristics of applications and user feedback to detect fraud software more efficiently and comprehensively.Through systematic data cleaning and manual review of applications on the Google Play Store,we constructed a sample dataset of 9 092 applications and conducted a comprehensive evaluation of our method.Experimental results show that our approach achieves a remarkable accuracy rate of 99.24%on real-world datasets,with lower false positive and false negative rates compared to alternative methods.This highlights the significant effectiveness and potential of our approach in the field of fraud software detection.

关键词

安卓/移动应用/欺诈软件/数据挖掘/情感分析

Key words

Android/mobile applications/fraud software/data mining/sentiment analysis

分类

计算机与自动化

引用本文复制引用

刘雨晨,王闪闪,赵振宇,欧阳谨,陈贞翔..基于数据挖掘和情感分析的欺诈软件检测方法[J].南京师范大学学报(工程技术版),2025,25(2):96-101,6.

基金项目

泰山学者工程项目(tsqnz20221146)、山东省自然科学基金青年项目(ZR2023QF096)、泉城省实验室重点项目(QCLZD202303). (tsqnz20221146)

南京师范大学学报(工程技术版)

1672-1292

访问量0
|
下载量0
段落导航相关论文