| 注册
首页|期刊导航|科技创新与应用|基于集成学习的安卓恶意软件特征提取与检测方法

基于集成学习的安卓恶意软件特征提取与检测方法

冯志峰

科技创新与应用2025,Vol.15Issue(18):45-49,5.
科技创新与应用2025,Vol.15Issue(18):45-49,5.DOI:10.19981/j.CN23-1581/G3.2025.18.010

基于集成学习的安卓恶意软件特征提取与检测方法

冯志峰1

作者信息

  • 1. 宁波城市职业技术学院,浙江 宁波 315000
  • 折叠

摘要

Abstract

Android,as the most popular operating system today,offers convenience to users through its openness and wide application.However,this same openness also provides opportunities for malware development,posing significant threats to users'personal privacy and data security.To address this issue,this study proposes an integrated learning-based method for feature extraction and detection of Android malware.The authorization request of Android APK is extracted as feature points through automated scripts,combined with an enhanced support vector machine(E-SVM)model and a convolutional neural network(CNN)model for integrated learning training,generated a hybrid model,and used to improve the detection rate of Android malware.Final experimental data shows that the detection accuracy rate for malware reaches more than 96%.

关键词

恶意软件/机器学习/深度学习/继承学习/特征提取检测

Key words

malware/machine learning/deep learning/inheritance learning/feature extraction and detection

分类

信息技术与安全科学

引用本文复制引用

冯志峰..基于集成学习的安卓恶意软件特征提取与检测方法[J].科技创新与应用,2025,15(18):45-49,5.

科技创新与应用

2095-2945

访问量0
|
下载量0
段落导航相关论文