| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|基于云边协同的智能电网多无人机辅助计算迁移

基于云边协同的智能电网多无人机辅助计算迁移

刘尚东 邱华杰 黄昕 沙宇晨 季一木

南京邮电大学学报(自然科学版)2025,Vol.45Issue(3):87-98,12.
南京邮电大学学报(自然科学版)2025,Vol.45Issue(3):87-98,12.DOI:10.14132/j.cnki.1673-5439.2025.03.010

基于云边协同的智能电网多无人机辅助计算迁移

Multi-UAV assisted computation offloading in smart grid based on cloud-edge collaboration

刘尚东 1邱华杰 2黄昕 2沙宇晨 2季一木1

作者信息

  • 1. 南京邮电大学计算机学院,江苏南京 210023||南京邮电大学高性能计算与大数据处理研究所,江苏南京 210023||南京邮电大学江苏省无线传感网高技术研究重点实验室,江苏南京 210023||国家高性能计算中心南京分中心,江苏南京 210023||江苏省高性能计算与智能处理工程研究中心,江苏南京 210023
  • 2. 南京邮电大学计算机学院,江苏南京 210023||南京邮电大学高性能计算与大数据处理研究所,江苏南京 210023
  • 折叠

摘要

Abstract

The application of edge computing in smart grid can partially meet the real-time requirements of power industry.However,as the grid is growing and the density of power terminal devices is rising,the statically deployed edge nodes can hardly cover all the scattered terminal devices,leading to extra-low computation offloading performance and efficiency.A multi-unmanned aerial vehicle(UAV)-assisted computational offloading algorithm based on double delay deep deterministic policy gradient is proposed and named as collaborative cloud-edge computing offloading based on TD3(CeCO-TD3).This algorithm constructs a multi-objective optimization function that incorporates UAV flight angle,distance,offload-ing service selection and task offloading ratio and aims at minimizing the system's computational delay and energy consumption.The optimization problem is solved by using a deep reinforcement learning algo-rithm.A cloud-side collaboration framework and a cloud-based policy experience pool with priorities are also introduced to further guarantee the quality of computational offloading services for multiple UAVs.Experimental results show that the proposed algorithm outperforms the traditional optimization algorithms in terms of scaling down the task transmission delay and reducing the computational energy consumption.

关键词

边缘计算/智能电网/深度强化学习/计算迁移

Key words

edge computing/smart grid/deep reinforcement learning/computational offloading

分类

计算机与自动化

引用本文复制引用

刘尚东,邱华杰,黄昕,沙宇晨,季一木..基于云边协同的智能电网多无人机辅助计算迁移[J].南京邮电大学学报(自然科学版),2025,45(3):87-98,12.

基金项目

国家重点研发计划(2023YFB2904000,2023YFB2904004)、江苏省重点发展规划项目(BE2023004-2)、江苏省自然科学及高校自然科学重大项目(20KJA520001)、中国电信江苏分公司2023年科技项目(JSSGS2301022EGN00)和未来网络科学研究基金(FNSRFP-2021-YB-15)资助项目 (2023YFB2904000,2023YFB2904004)

南京邮电大学学报(自然科学版)

OA北大核心

1673-5439

访问量0
|
下载量0
段落导航相关论文