| 注册
首页|期刊导航|农业大数据学报|基于车载相机和HLS时序遥感数据的作物分类研究

基于车载相机和HLS时序遥感数据的作物分类研究

钱涛 朱艳 曹卫星 江冲亚 詹雅婷 李胤 宋珂 邵明超 虞钟直 程涛 姚霞 郑恒彪

农业大数据学报2025,Vol.7Issue(2):161-172,12.
农业大数据学报2025,Vol.7Issue(2):161-172,12.DOI:10.19788/j.issn.2096-6369.000098

基于车载相机和HLS时序遥感数据的作物分类研究

Crop Classification Research Based on Vehicle Images and HLS Time-series Remote Sensing Data

钱涛 1朱艳 2曹卫星 1江冲亚 2詹雅婷 3李胤 3宋珂 3邵明超 1虞钟直 1程涛 1姚霞 1郑恒彪1

作者信息

  • 1. 南京农业大学国家信息农业工程技术中心,南京 210095||智慧农业教育部工程研究中心,南京 210095||农业农村部农作物系统分析与决策重点实验室,南京 210095||江苏省信息农业重点实验室,南京 210095
  • 2. 南京农业大学国家信息农业工程技术中心,南京 210095||智慧农业教育部工程研究中心,南京 210095||农业农村部农作物系统分析与决策重点实验室,南京 210095||江苏省信息农业重点实验室,南京 210095||江苏省自然资源厅卫星遥感应用重点实验室,南京 210018
  • 3. 江苏省地质调查研究院,南京 210018||自然资源江苏省卫星应用技术中心,南京 210018||江苏省自然资源厅卫星遥感应用重点实验室,南京 210018
  • 折叠

摘要

Abstract

This study aims to develop a crop classification method by integrating vehicle images with HLS time-series remote sensing data.The goal is to enhance classification efficiency and accuracy,addressing the limitations of traditional methods such as low efficiency in ground sample collection and insufficient utilization of remote sensing phenological features.A vehicle-mounted camera system was deployed to collect manually annotated crop samples along road networks,combined with HLS time-series data from 2023 and 2024.Gaussian filtering was applied to reconstruct the time-series imagery,and the Random Forest classification method was employed to classify three major crops:rice,maize,and soybean.Results demonstrated significant differences in the characteristics of rice,maize,and soybean in the HLS time-series data.Among these crops,rice achieved the highest classification accuracy,with both producer's and user's accuracy exceeding 90%,whereas maize and soybean had lower accuracies(74%-85%)due to their similar phenological characteristics.The overall classification accuracy in the validation area was 89%.The rice in the verification area is mainly distributed in the southeast region of the county,while corn and soybeans are concentrated in the northwest region,and their distribution characteristics are clear.The integration of vehicle images and HLS time-series data proves effective for crop classification,with the Random Forest model demonstrating superior performance in handling high-dimensional features and sample imbalance.However,challenges remain in fragmented farmland and cloud-covered areas.Future improvements should focus on incorporating multi-source data to address cloud contamination and mixed-pixel effects in fragmented areas,while expanding crop categories to enhance model generalizability for broader agricultural applications.

关键词

车载相机/HLS/农作物/遥感分类/农业大数据

Key words

vehicle images/HLS/crops/remote sensing classification/agricultural big data

引用本文复制引用

钱涛,朱艳,曹卫星,江冲亚,詹雅婷,李胤,宋珂,邵明超,虞钟直,程涛,姚霞,郑恒彪..基于车载相机和HLS时序遥感数据的作物分类研究[J].农业大数据学报,2025,7(2):161-172,12.

基金项目

国家重点研发计划课题(2023YFD2000103) (2023YFD2000103)

中央高校基本科研业务费(QTPY2025010) (QTPY2025010)

国家自然科学基金优秀青年科学基金项目(海外) (海外)

江苏特聘教授 ()

江苏省自然资源厅2024年度科技计划项目(2024023) (2024023)

江苏省自然资源厅2024年度科技计划项目(2024007). (2024007)

农业大数据学报

2096-6369

访问量0
|
下载量0
段落导航相关论文