| 注册
首页|期刊导航|计算机应用与软件|基于改进CNN-LSTM的高速公路交通流量预测研究

基于改进CNN-LSTM的高速公路交通流量预测研究

何仲祥 吴明礼

计算机应用与软件2025,Vol.42Issue(6):136-140,177,6.
计算机应用与软件2025,Vol.42Issue(6):136-140,177,6.DOI:10.3969/j.issn.1000-386x.2025.06.018

基于改进CNN-LSTM的高速公路交通流量预测研究

RESEARCH ON EXPRESSWAY TRAFFIC FLOW FORECASTING BASED ON IMPROVED CNN-LSTM

何仲祥 1吴明礼1

作者信息

  • 1. 宁夏回族自治区公路联网收费清分结算中心 宁夏银川 750011
  • 折叠

摘要

Abstract

This paper addresses the issues of complex and diverse spatiotemporal characteristics,and the insufficiencies in robustness and adaptability of traffic flow.We propose an improved model based on the convolutional neural network(CNN)and long short-term memory(LSTM)network for highway traffic flow prediction.The model aimed to resolve the correlations in time series and spatial network by extracting relevant features and conducting perturbation analysis during the model training process,introducing an error compensation mechanism to enhance the performance of traffic flow prediction.Experimental results indicate that the model can effectively predict traffic flow in highway networks,demonstrating good accuracy and robustness,which holds significant implications for the construction of intelligent transportation systems.

关键词

卷积神经网络/长短期记忆网络/交通流量预测/智能交通

Key words

CNN/LSTM/Traffic flow forecasting/Intelligent transportation

分类

信息技术与安全科学

引用本文复制引用

何仲祥,吴明礼..基于改进CNN-LSTM的高速公路交通流量预测研究[J].计算机应用与软件,2025,42(6):136-140,177,6.

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文