| 注册
首页|期刊导航|计算机应用与软件|嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型

嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型

张家源 窦全胜 唐焕玲

计算机应用与软件2025,Vol.42Issue(6):218-224,240,8.
计算机应用与软件2025,Vol.42Issue(6):218-224,240,8.DOI:10.3969/j.issn.1000-386x.2025.06.028

嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型

SCALED-YOLOV4 MODEL EMBEDDED WITH ADAPTIVE SPATIAL ATTENTION FOR SMALL OBJECT DETECTION

张家源 1窦全胜 1唐焕玲2

作者信息

  • 1. 喀什大学计算机科学与技术学院 新疆喀什 844006||山东工商学院计算机科学与技术学院 山东烟台 264000
  • 2. 山东工商学院计算机科学与技术学院 山东烟台 264000
  • 折叠

摘要

Abstract

In order to solve the problem of low detection accuracy caused by fixed receptive field in object detection while convolution only pays attention to conventional size targets and ignores the characteristics of small targets,an adaptive spatial attention mechanism is proposed.This method added parallel convolution kernels of different sizes and was embedded in the 3×3 convolution layer of Scaled-YOLOv4 residual structure,so that the network could adjust the receptive field size according to different sizes to enhance the feature extraction of small targets.The experimental results show that the new network model can effectively improve the detection accuracy of the algorithm for small targets,and improve the problems of false detection and missed detection in the original model.The detection accuracy on datasets such as MSCOCO and PASCAL VOC has been greatly improved.

关键词

小目标检测/Scaled-YOLOv4/深度学习/注意力机制/自适应感受野

Key words

Small object detection/Scaled-YOLOv4/Deep learning/Attention mechanism/Adaptive receptive field

分类

信息技术与安全科学

引用本文复制引用

张家源,窦全胜,唐焕玲..嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型[J].计算机应用与软件,2025,42(6):218-224,240,8.

基金项目

国家自然科学基金项目(61976125,61976124) (61976125,61976124)

烟台市重点研发计划项目(2019XDHZ081,2017ZH065). (2019XDHZ081,2017ZH065)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文