| 注册
首页|期刊导航|计算机应用与软件|基于金字塔卷积和像素注意力的分割方法

基于金字塔卷积和像素注意力的分割方法

阴桂梅 肖易勇 席鑫华 赵艳丽 谭淑平 强彦 罗士朝

计算机应用与软件2025,Vol.42Issue(6):241-248,289,9.
计算机应用与软件2025,Vol.42Issue(6):241-248,289,9.DOI:10.3969/j.issn.1000-386x.2025.06.031

基于金字塔卷积和像素注意力的分割方法

SEGMENTATION METHOD BASED ON PYRAMID CONVOLUTION AND PIXEL ATTENTION

阴桂梅 1肖易勇 1席鑫华 1赵艳丽 2谭淑平 2强彦 3罗士朝3

作者信息

  • 1. 太原师范学院计算机系 山西晋中 030619
  • 2. 北京市回龙观医院 北京 100096
  • 3. 太原理工大学信息与计算机学院 山西晋中 030600
  • 折叠

摘要

Abstract

To address the problems of large variation in size and complex structure of segmentation targets and poor learning of target edge details by neural networks in medical image segmentation tasks,we propose a pyramidal dilated convolution and pixel-level attention network(DP-Net)based on the U-Net network.The dilated convolution pyramid module was constructed and designed to replace the traditional convolution operation,which extended the network perceptual field and encoded the global contextual information through the combination of multiple dilated convolutions.A pixel-level attention module was proposed to further encode inter-pixel dependencies based on the channel attention mechanism enabling the network to learn richer local contextual information from the features of different channels.Through experimental evaluation on the open lung dataset LIDC and private liver tumor dataset,the proposed DP-Net obtains better performance than current methods on all three kind of evaluation metrics,demonstrating the effectiveness of the proposed network improvement in terms of segmentation accuracy.

关键词

深度学习/医学图像处理/图像分割/注意力机制/空洞卷积

Key words

Deep learning/Medical image processing/Image segmentation/Attention mechanism/Dilated convolution

分类

计算机与自动化

引用本文复制引用

阴桂梅,肖易勇,席鑫华,赵艳丽,谭淑平,强彦,罗士朝..基于金字塔卷积和像素注意力的分割方法[J].计算机应用与软件,2025,42(6):241-248,289,9.

基金项目

国家自然科学基金项目(61872261). (61872261)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文