维分数阶强耦合薛定谔方程的保结构方法OA
Structure-preserving Method for Strongly Coupled Two-dimensional Fractional Schrodinger Equations
构造能够保持分数阶强耦合薛定谔方程原始不变量的有效数值解法.首先利用降阶技术和实部、虚部分离手段将分数阶强耦合薛定谔方程改写成等价的哈密顿系统,然后在空间和时间方向分别采用Fou-rier拟谱法和分区平均向量场(PAVF)系列方法进行离散,建立相应的全离散数值方法.理论和数值实验结果表明,所获得的PAVF系列方法都能够保持模型的原始能量,但只有PAVF-P方法能同时保持原始的能量和质量.
The main contribution of this paper is to construct an effective numerical method for preserving the original invariants of the strongly coupled fractional Schrödinger equations.Firstly,the strongly coupled fractional Schrödinger equations are rewritten into an equivalent Hamiltonian form by using the order reduction technique and the real and imaginary part separation methods.Then,the Fou-rier pseudo-spectral method and a variety of partitioned average vector field(PAVF)methods are used in the spatial and temporal di-rections,respectively,and the corresponding fully discrete numerical methods are established.Theoretical and numerical results show that these obtained PAVF methods can preserve the original energy of the studied model,but only the PAVF-P method can preserve the original energy and mass.
谭凤;冉茂华;刘洋
四川师范大学数学科学学院,四川 成都 610066四川师范大学数学科学学院,四川 成都 610066四川师范大学数学科学学院,四川 成都 610066
数学
哈密顿系统耦合薛定谔方程平均向量场方法Fourier谱法
Hamiltonian systemcoupled Schrödinger equationaverage vector field methodFourier pseudo-spectral method
《四川师范大学学报(自然科学版)》 2025 (5)
693-703,11
国家自然科学基金青年基金(11801389)和四川省科技计划项目(2024NSFSC0441)
评论