| 注册
首页|期刊导航|综合智慧能源|基于PSO-BP神经网络的住宅光伏发电预测模型

基于PSO-BP神经网络的住宅光伏发电预测模型

班逢春 陈萧凤 黄志甲

综合智慧能源2025,Vol.47Issue(6):85-93,9.
综合智慧能源2025,Vol.47Issue(6):85-93,9.DOI:10.3969/j.issn.2097-0706.2025.06.009

基于PSO-BP神经网络的住宅光伏发电预测模型

Residential photovoltaic power generation prediction model based on PSO-BP neural network

班逢春 1陈萧凤 2黄志甲1

作者信息

  • 1. 安徽工业大学 建筑工程学院,安徽 马鞍山 243032
  • 2. 中国建筑科学研究院有限公司,北京 100013
  • 折叠

摘要

Abstract

The residential rooftop,as an idle space that is almost free from shading,provides ideal conditions for the deployment of photovoltaic(PV)systems.However,the intermittency and volatility of photovoltaic generation,along with the mismatch between photovoltaic power generation and residential electricity demand at different times,present significant challenges for the energy management system in achieving supply-demand balance.As an essential component of energy system optimization and performance enhancement,photovoltaic generation forecasting is critical to effectively addressing these challenges.To this end,this paper proposes an improved forecasting model that combines Particle Swarm Optimization(PSO)with Backpropagation(BP)Neural Networks.In this model,PSO is employed to optimize the parameters of the BP neural network,significantly improving the accuracy and stability of photovoltaic power prediction.Experimental results demonstrate that the improved model outperforms the traditional BP neural network in forecasting accuracy across all seasons.The average root mean square error(RMSE)is reduced by 42.31%,and the coefficient of determination(R2)increases by 2.22%.The annual average forecasting accuracy exceeds 90.00%,with the highest accuracy achieved in winter,reaching 99.46%.This study provides reliable forecasting data for the optimized scheduling of photovoltaic systems in residential buildings,offering substantial practical application value.

关键词

光伏发电/功率预测/BP神经网络/光伏住宅/四季预测模型

Key words

photovoltaic power generation/power prediction/BP Neural Network/PV residential building/four-season prediction model

分类

能源科技

引用本文复制引用

班逢春,陈萧凤,黄志甲..基于PSO-BP神经网络的住宅光伏发电预测模型[J].综合智慧能源,2025,47(6):85-93,9.

基金项目

国家自然科学基金项目(51478001) National Natural Science Foundation of China(51478001) (51478001)

综合智慧能源

2097-0706

访问量4
|
下载量0
段落导航相关论文