| 注册
首页|期刊导航|水力发电学报|非一致性极值降雨空间聚类和频率及对气候因子响应研究

非一致性极值降雨空间聚类和频率及对气候因子响应研究

曾杭 周洋 李建柱 杨琦 黄佳期

水力发电学报2025,Vol.44Issue(6):72-88,17.
水力发电学报2025,Vol.44Issue(6):72-88,17.DOI:10.11660/slfdxb.20250608

非一致性极值降雨空间聚类和频率及对气候因子响应研究

Nonstationary extreme rainfall spatial clustering and frequency responses to climate drivers

曾杭 1周洋 1李建柱 2杨琦 3黄佳期4

作者信息

  • 1. 长沙理工大学 水利与海洋工程学院,长沙 410114||长沙理工大学 洞庭湖水环境治理与生态修复湖南省重点实验室,长沙 410114
  • 2. 天津大学 水利工程智能建设与运维全国重点实验室,天津 300350
  • 3. 长沙理工大学 水利与海洋工程学院,长沙 410114||镇江江海船舶修理有限责任公司,江苏 镇江 212000
  • 4. 长沙理工大学 水利与海洋工程学院,长沙 410114||岳阳市水利水电规划勘测设计院有限公司,湖南 岳阳 414000
  • 折叠

摘要

Abstract

Under global climate change,spatial clustering variations in extreme rainfall time series and their responses to climate drivers are critical to storm risk assessment for a river basin.In this study,we first take the Xiang River basin as the study area,and divide its extreme rainfall series into three clustering regions by applying the partitioning around medoids(PAM)algorithm that is based on the special variogram F-madogram.Then,for each clustering region,the climate drivers are identified by testing their significant correlation with extreme rainfall series from most rainfall stations.Finally,we take the extreme rainfall events of clustering center stations as a representative of the clustering region,and construct a non-stationary extreme rainfall frequency model based on the Bayesian inference.The modeling results reveal the extreme clustering algorithm gives better predictions of the extreme value series than the K-means clustering algorithm.The time-varying models using climate drivers as covariates have the best modeling performance and lowest uncertainties.We demonstrate that the probability of extreme rainfall events in this basin will be increased effectively,especially its rainfall intensity,if three conditions occurred in previous year-the values of North Atlantic Oscillation Index were negative,the sea level pressure in western Pacific Ocean rose,and the sea surface temperature in eastern Pacific Ocean rose.The results help evaluate and forecast the risks of extreme rainfall events in the Xiang River basin.

关键词

极值空间聚类/变差函数/围绕中心点划分聚类算法/气候驱动/非一致性极值降雨/湘江流域

Key words

extreme spatial clustering/variogram/partitioning around medoids algorithm/climate driver/nonstationary extreme rainfall/Xiang River basin

分类

地球科学

引用本文复制引用

曾杭,周洋,李建柱,杨琦,黄佳期..非一致性极值降雨空间聚类和频率及对气候因子响应研究[J].水力发电学报,2025,44(6):72-88,17.

基金项目

国家自然科学基金项目(52279022) (52279022)

湖南省教育厅科学研究项目(24B0329) (24B0329)

湖南省研究生科研创新项目资助(LXBZZ2024210) (LXBZZ2024210)

水力发电学报

OA北大核心

1003-1243

访问量0
|
下载量0
段落导航相关论文