| 注册
首页|期刊导航|综合智慧能源|基于多尺度卷积-残差网络的短期风电预测

基于多尺度卷积-残差网络的短期风电预测

殷林飞 仝博文 李雯吉

综合智慧能源2025,Vol.47Issue(6):1-10,10.
综合智慧能源2025,Vol.47Issue(6):1-10,10.DOI:10.3969/j.issn.2097-0706.2025.06.001

基于多尺度卷积-残差网络的短期风电预测

Multiscale convolution-residual network for short-term wind power forecasting

殷林飞 1仝博文 1李雯吉1

作者信息

  • 1. 广西大学 广西电力系统最优化与节能技术重点实验室,南宁 530004
  • 折叠

摘要

Abstract

Short-term wind power forecast can provide a basis for power system scheduling and prevent power systems from severe impacts of wind power fluctuations.To improve the low prediction accuracy of existing deep learning models applied for short-term wind power prediction,a short-term wind power prediction method based on multiscale convolution-residual network is proposed to optimize the models.The proposed multiscale convolution-residual network is characterized by full range of feature extraction scales and strong stability,and the multiscale convolution part taking layers with convolutional kernel sizes of 3×3,5×5,7×7 and 9×9 is used to extracted detailed information and global information from the input data.By introducing hopping connections to the residual block,the vanishing gradient problem in the convolutional neural network is solved.The results of the simulation applying on the Natal 378-day dataset show that,the multiscale convolution-residual network can make an accurate prediction on wind power for the next 24 h,and the mean square error of the proposed network is more than 43.55%smaller than that of DarkNet19,InceptionResNetV2,InceptionV3,ResNet18,ResNet50,ShuffleNet and Xception.

关键词

多尺度卷积/残差/深度学习/优化模型结构/短期风电预测

Key words

multiscale convolution/residual/deep learning/model optimization/short-term wind power forecast

分类

能源科技

引用本文复制引用

殷林飞,仝博文,李雯吉..基于多尺度卷积-残差网络的短期风电预测[J].综合智慧能源,2025,47(6):1-10,10.

基金项目

国家自然科学基金项目(52107081) (52107081)

广西自然科学基金项目(AA22068071) National Natural Science Foundation of China(52107081) (AA22068071)

Guangxi Natural Science Foundation(AA22068071) (AA22068071)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文