| 注册
首页|期刊导航|节能|基于人工神经网络的板式换热器热阻和能效预测模型研究

基于人工神经网络的板式换热器热阻和能效预测模型研究

宋坤卿 陈镜如 孙燕华

节能2025,Vol.44Issue(4):61-65,5.
节能2025,Vol.44Issue(4):61-65,5.DOI:10.3969/j.issn.1004-7948.2025.04.015

基于人工神经网络的板式换热器热阻和能效预测模型研究

Research on thermal resistance and energy efficiency prediction model of plate heat exchangers based on artificial neural network

宋坤卿 1陈镜如 2孙燕华3

作者信息

  • 1. 济南市计量检定测试院,山东 济南 250101
  • 2. 山东电力工程咨询院有限公司,山东 济南 250013
  • 3. 山东中和热工科技有限公司,山东 济南 250401
  • 折叠

摘要

Abstract

In response to the prediction requirements of energy efficiency and thermal resistance of plate heat exchangers,taking the flow rates of cold and hot fluids as input parameters and thermal resistance and energy efficiency as output parameters,an artificial neural network model of plate heat exchangers is constructed.The optimal model parameters are determined through hyperparameter analysis.Considering the inlet and outlet temperatures of the fluids on the cold and hot sides,two sets of control models are established respectively.Combined with SHAP analysis,the marginal contributions of each thermodynamic parameter to the prediction of thermal resistance and energy efficiency are given.The results show that the artificial neural network model with the flow rates of cold and hot fluids as input has better predictive performance,and the maximum relative errors for predicting thermal resistance and energy efficiency are 3.08%and 5.97%respectively.The flow rates of cold and hot fluids are important influencing factors for the output of artificial neural network models and should be given priority when constructing the model and selecting the training set.

关键词

换热器/性能预测/神经网络/SHAP分析

Key words

heat exchanger/performance prediction/neural network/SHAP analysis

分类

计算机与自动化

引用本文复制引用

宋坤卿,陈镜如,孙燕华..基于人工神经网络的板式换热器热阻和能效预测模型研究[J].节能,2025,44(4):61-65,5.

节能

1004-7948

访问量0
|
下载量0
段落导航相关论文