首页|期刊导航|网络安全与数据治理|基于深度学习的物联网入侵检测系统综述

基于深度学习的物联网入侵检测系统综述OA

A review of IoT intrusion detection systems based on deep learning

中文摘要英文摘要

物联网中智能设备的互联互通在推动社会进步的同时,也因设备异构性、协议多样性和资源受限性导致安全威胁日益复杂化.传统入侵检测系统依赖特征匹配和规则定义,在面对新型攻击和动态攻击模式时表现出局限性.系统梳理了深度学习技术在物联网入侵检测系统中的应用进展,通过对比分析发现:基于深度学习的模型在检测精度和实时性上优于传统方法,在处理空间特征、捕捉时序依赖等方面表现突出;无监督学习和集成方法通过生成对抗样本、融合多模型优势,有效提升了小样本场景下的检测鲁棒性;当前研究仍面临数据标注成本高、边缘计算资源受限、动态攻击适应性不足等挑战.总结探讨了未来研究应聚焦轻量化、跨模态数据融合等方向,为构建高效、自适应的物联网安全防护体系提供理论支撑.

While the interconnection of smart devices in the Internet of Things promotes social progress,it also leads to increas-ingly complex security threats due to device heterogeneity,protocol diversity and resource constraints.Traditional intrusion detec-tion systems rely on feature matching and rule definition,and show limitations when facing new attacks and dynamic attack pat-terns.This paper systematically sorts out the application progress of deep learning technology in the intrusion detection system of the Internet of Things.Through comparative analysis,it is found that the model based on deep learning is superior to traditional methods in detection accuracy and real-time performance,and has outstanding performance in processing spatial features and cap-turing temporal dependencies.Unsupervised learning and integration methods effectively improve the detection robustness in small sample scenarios by generating adversarial samples and integrating the advantages of multiple models.Current research still faces challenges such as high data annotation costs,limited edge computing resources,and insufficient adaptability to dynamic attacks.This paper summarizes and discusses the directions that future research should focus on,such as lightweight and cross-modal data fusion,to provide theoretical support for building an efficient and adaptive Internet of Things security protection system.

周品希;沈岳;李伟

湖南农业大学 信息与智能科学技术学院,湖南 长沙 410000湖南农业大学 信息与智能科学技术学院,湖南 长沙 410000湖南农业大学 信息与智能科学技术学院,湖南 长沙 410000

计算机与自动化

网络安全物联网入侵检测深度学习

network securityInternet of Thingsintrusion detectiondeep learning

《网络安全与数据治理》 2025 (6)

1-10,10

湖南省教育厅基金项目(22B0204)

10.19358/j.issn.2097-1788.2025.06.001

评论