基于混合粒度全局图的多标签文本分类方法OA
A multi-label text classification method based on a mixed-granularity global graph
多标签文本分类旨在为每个文本实例分配多个标签.传统多标签文本分类方法通常依赖于粗粒度的特征表示,忽视了文本中多层次、多尺度的语义信息.为了解决该问题,提出一种基于混合粒度全局图的多标签文本分类方法,通过MHA提取细粒度的文本特征,捕捉词与标签之间的交互信息,同时使用Bi-LSTM提取粗粒度的文本特征.随后,通过门控融合机制将两种特征融合得到具有多层次语义的混合粒度特征.将混合粒度词表示、文本和标签作为节点构建全局图,并通过图卷积网络处理全局图以进行分类.在AAPD、RCV1-V2 两个数据集上进行实验,实验结果表明,所提出方法能有效提升模型性能.
Multi-label text classification is designed to assign multiple labels to each instance of text.Traditional multi-label text classification methods usually rely on coarse-grained feature representations,ignoring the multi-level and multi-scale semantic in-formation in the text.In order to solve this problem,this paper proposes a multi-label text classification method based on mixed granularity global graph,which extracts fine-grained text features through MHA to capture the interaction information between words and labels,and uses Bi-LSTM to extract coarse-grained text features.Subsequently,the two features are fused through the gated fusion mechanism to obtain mixed granular features with multi-level semantics.The fused mixed granular word representa-tions,texts,and labels are used together to construct a global graph,and the global graph is processed through a graph convolu-tional network for classification.Experiments are carried out on two datasets,AAPD and RCV1-V2,and the experimental results show that the proposed method can effectively improve the performance of the model.
王哲;温秀梅
河北建筑工程学院 信息工程学院,河北 张家口 075000河北建筑工程学院 信息工程学院,河北 张家口 075000
计算机与自动化
多标签文本分类多头注意力机制双向长短期记忆网络门控融合机制图卷积网络
multi-label text classificationmulti-head attention mechanismbidirectional long short-term memory networkgated fusion mechanismgraph convolutional networks
《网络安全与数据治理》 2025 (6)
42-48,7
河北建筑工程学院研究生创新基金(XY2025029)
评论