| 注册
首页|期刊导航|现代电子技术|基于FNM-Net的轻量级遥感目标检测算法

基于FNM-Net的轻量级遥感目标检测算法

文斌 张俊 王浚银 王子豪 丁弈夫

现代电子技术2025,Vol.48Issue(13):1-10,10.
现代电子技术2025,Vol.48Issue(13):1-10,10.DOI:10.16652/j.issn.1004-373x.2025.13.001

基于FNM-Net的轻量级遥感目标检测算法

Lightweight remote sensing object detection algorithm based on FNM-Net

文斌 1张俊 1王浚银 2王子豪 2丁弈夫3

作者信息

  • 1. 三峡大学 梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002||三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 3. 国网重庆市电力公司 南川供电分公司,重庆 404000
  • 折叠

摘要

Abstract

In view of the current challenges in remote sensing object detection,such as low accuracy,slow processing speeds and large quantity of model parameters,an FNM-Net,a lightweight remote sensing object detection network based on an improved YOLOv7-tiny architecture,is proposed.Firstly,a lightweight feature extraction network Faster-Net is introduced to substitute the original one,so as to prevent the network's excessive overlap of feature maps.Secondly,the focal modulation module is introduced and the spatial information integration module(SIIM)is proposed to construct a new path aggregation network that mitigates issues of the information redundancy and the overlook of intra-layer features during feature fusion.And then,the multi-fine-grained detection heads are designed to avoid the large scale variations of remote sensing objects.Finally,a pruning method utilizing a layer adaptive amplitude pruning(LAMP)score is employed to eliminate connections with minor weights,thereby reducing parameter number and computational burden and increasing the detection speed.This method is validated by the public RSOD dataset.The results show that the proposed method achieves a 51.2%reduction in parameter number,a 55.2%decrease in FLOPs,a 6.5 f/s increase in detection speed,and a 2.1%improvement in mAP(mean average precision)in comparison with those of the baseline model.Additionally,its generalizability is confirmed on the NWPU VHR-10 dataset.

关键词

遥感目标检测/FNM-Net/轻量级/剪枝/改进YOLOv7-tiny/SIIM

Key words

remote sensing object detection/FNM-Net/light weight/pruning/improved YOLOv7-tiny/SIIM

分类

电子信息工程

引用本文复制引用

文斌,张俊,王浚银,王子豪,丁弈夫..基于FNM-Net的轻量级遥感目标检测算法[J].现代电子技术,2025,48(13):1-10,10.

基金项目

国家自然科学基金项目(62273200) (62273200)

湖北省输电线路工程技术研究中心研究基金(2022KXL03) (2022KXL03)

湖北省自然科学基金联合基金项目(2024AFD409) (2024AFD409)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文