| 注册
首页|期刊导航|现代电子技术|基于样本重要性的分布式深度学习通信优化策略

基于样本重要性的分布式深度学习通信优化策略

蒙玉功

现代电子技术2025,Vol.48Issue(13):77-82,6.
现代电子技术2025,Vol.48Issue(13):77-82,6.DOI:10.16652/j.issn.1004-373x.2025.13.012

基于样本重要性的分布式深度学习通信优化策略

Distributed deep learning communication optimization strategy based on sample importance

蒙玉功1

作者信息

  • 1. 广西码农信息科技有限公司,广西 南宁 530003
  • 折叠

摘要

Abstract

The computing nodes in distributed deep learning(DDL)need to frequently exchange gradient data with the server,which results in large communication overhead.In view of this,a DDL communication optimization strategy based on sample importance is proposed.It mainly includes three contents.The importance distribution of data samples is explored by confirmatory experiments.The importance of data samples is evaluated by cross-entropy loss.In combination with the network status awareness mechanism and by taking the end-to-end network delay as the network status feedback indicator,the computing nodes are used to adjust the compression ratios of the transmission gradient dynamically,which reduces network traffic while ensuring model convergence,thereby improving the training efficiency of DDL.Experimental results show that the proposed method can improve communication efficiency effectively in distributed training scenarios of different scales.In comparison with the existing gradient compression strategies,the proposed method can reduce distributed training time by up to 40%.

关键词

分布式深度学习/随机梯度下降/样本重要性/交叉熵/网络状态感知/动态压缩

Key words

DDL/stochastic gradient descent/sample importance/cross-entropy/network status awareness/dynamic compression

分类

信息技术与安全科学

引用本文复制引用

蒙玉功..基于样本重要性的分布式深度学习通信优化策略[J].现代电子技术,2025,48(13):77-82,6.

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文