基于改进MobileNetV2的牛只面部识别方法研究OA
Research on Cattle Facial Recognition Method Based on Improved MobileNetV2
针对传统牛只个体识别过程中牛只易受惊且耗费人力物力等问题,文章研究借助计算机视觉技术,提出了一种非接触式的牛只个体识别方法.首先,在真实牛场环境中拍摄牛只面部照片,构建了牛只面部识别数据集;其次,结合牛场实际的网络条件和算力水平,选定轻量化神经网络模型MobileNetV2 作为基础网络模型;最后,引入CA(Coordinate Attention)注意力机制对MobileNetV2 模型进行改进,以此提升模型精度,增强其对关键位置的特征提取能力.实验结果表明,改进后的MobileNetV2 模型在牛只面部识别任务中表现优异,模型大小仅为 2.86 MB,识别准确率高达95.81%,能够充分满足实际牛场环境中非接触式牛只个体识别的需求.
In view of the problems that cattle are easily frightened and consume manpower and material resources in the process of traditional cattle individual identification,this paper proposes a non-contact cattle individual identification method by means of computer vision technology.Firstly,the cattle face photos are taken in the real cattle farm environment,and the cattle face recognition dataset is constructed.Secondly,combined with the actual network conditions and computing power level of the cattle farm,the lightweight Neural Network model MobileNetV2 is selected as the basic network model.Finally,the Coordinate Attention Mechanism is introduced to improve the MobileNetV2 model,so as to improve the accuracy of the model and enhance its feature extraction ability for key positions.The experimental results show that the improved MobileNetV2 model performs well in the cattle face recognition task.The model size is only 2.86 MB,and the recognition accuracy is as high as 95.81%,which can fully meet the needs of non-contact cattle individual recognition in the actual cattle farm environment.
田慧娟;曹梦琦;汝春瑞;任朝辉
杨凌职业技术学院,陕西 咸阳 712199杨凌职业技术学院,陕西 咸阳 712199杨凌职业技术学院,陕西 咸阳 712199杨凌职业技术学院,陕西 咸阳 712199
计算机与自动化
MobileNetV2注意力机制牛只识别
MobileNetV2Attention Mechanismcattle identification
《现代信息科技》 2025 (11)
20-24,5
杨凌职业技术学院2023年科技创新项目(zk23-02)
评论