| 注册
首页|期刊导航|现代信息科技|基于FY-4A卫星的沙尘暴识别方法研究与比较

基于FY-4A卫星的沙尘暴识别方法研究与比较

张翔

现代信息科技2025,Vol.9Issue(12):1-6,6.
现代信息科技2025,Vol.9Issue(12):1-6,6.DOI:10.19850/j.cnki.2096-4706.2025.12.001

基于FY-4A卫星的沙尘暴识别方法研究与比较

Research and Comparison of Dust Storm Identification Methods Based on FY-4A Satellite

张翔1

作者信息

  • 1. 内蒙古自治区气象数据中心,内蒙古 呼和浩特 010051
  • 折叠

摘要

Abstract

Satellite remote sensing technology is now widely used to monitor the dust storm process in space and time.Fengyun-4 Meteorological Satellite(FY-4A)is a new generation of geostationary remote sensing meteorological satellites in China,and its Multi-channel Advanced Geosynchronous Radiation Imager(AGRI)plays an active role in dust identification in Asia.Several dust recognition methods based on satellite data,including dust recognition method based on RGB images,BTD(Brightness Temperature Difference),NDDI(Normalized Difference Dust Index)and Machine Learning-based dust retrieval methods,are applied to the L1 data of the FY-4A satellite AGRI to realize the identification of dust.Through individual case analysis,the experimental results are further studied and compared.The results show that most of the dust identification methods applied to the FY-4A satellite can distinguish the surface,clouds and dust,and then identify the dust.For the identification method based on physical characteristics,due to the difference in the bands of different satellites,the threshold universality is poor,and there are cases of small dust identification and misjudgment of dust in some areas.Based on the Machine Learning method,it can effectively identify the dust range,which has strong applicability and broad application prospects.Finally,the application of satellite-based dust storm identification methods is summarized,and further prospects for dust identification are given.

关键词

FY-4A卫星/沙尘暴/RGB图像/BTD/NDDI/机器学习

Key words

FY-4A satellite/dust storm/RGB image/BTD/NDDI/Machine Learning

分类

信息技术与安全科学

引用本文复制引用

张翔..基于FY-4A卫星的沙尘暴识别方法研究与比较[J].现代信息科技,2025,9(12):1-6,6.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文