| 注册
首页|期刊导航|信息与控制|基于小样本学习的表面缺陷检测方法

基于小样本学习的表面缺陷检测方法

苏奕铭 贺睿杰 刘雅静 田建东

信息与控制2025,Vol.54Issue(3):502-512,11.
信息与控制2025,Vol.54Issue(3):502-512,11.DOI:10.13976/j.cnki.xk.2024.4085

基于小样本学习的表面缺陷检测方法

Surface Defect Detection Method Based on Few-shot Learning

苏奕铭 1贺睿杰 2刘雅静 1田建东3

作者信息

  • 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院大学,北京 100049
  • 2. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||东北大学信息科学与工程学院,辽宁沈阳 110819
  • 3. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016
  • 折叠

摘要

Abstract

In intelligent industrial production,defect detection technology using deep learning faces challenges such as insufficient defect samples,different defect sizes,and low detection accuracy.To address these problems,we propose a surface defect detection model leveraging few-shot learn-ing,building on the Faster R-CNN(Faster Region-based Convolutional Neural Network).First,we enhance the traditional convolution in the ResNet101 and FPN(Feature Pyramid Network)backbone network with deformable convolutions to extract features.Objects are then extracted from images to generate an object pyramid,selecting corresponding features as positive samples to en-rich the scale space of small samples.Finally,we encode RoI(Region of Interest)features using contrastive learning to measure the similarity between regional proposals,achieving a more compact feature representation and reducing misclassification issues in small samples.Finally,comparative experiments on the collected small sample defect dataset demonstrate the model's effectiveness,yielding a 96.6%accuracy and 70.6%average accuracy,outperforming other models.

关键词

小样本学习/表面缺陷检测/可变形卷积/目标金字塔/对比学习

Key words

few-shot learning/surface defect detection/deformable convolution/object pyramid/contrastive learning

分类

计算机与自动化

引用本文复制引用

苏奕铭,贺睿杰,刘雅静,田建东..基于小样本学习的表面缺陷检测方法[J].信息与控制,2025,54(3):502-512,11.

基金项目

国家自然科学基金项目(U2013210) (U2013210)

中国科学院青年创新促进会项目(2019000399) (2019000399)

信息与控制

OA北大核心

1002-0411

访问量1
|
下载量0
段落导航相关论文