| 注册
首页|期刊导航|自动化学报|梯度引导的JPEG压缩图像超分辨率重建

梯度引导的JPEG压缩图像超分辨率重建

曹坪 林树冉 张淳杰 郑晓龙 赵耀

自动化学报2025,Vol.51Issue(6):1261-1276,16.
自动化学报2025,Vol.51Issue(6):1261-1276,16.DOI:10.16383/j.aas.c240517

梯度引导的JPEG压缩图像超分辨率重建

Gradient-guided Super-resolution Reconstruction for JPEG-compressed Images

曹坪 1林树冉 1张淳杰 1郑晓龙 2赵耀1

作者信息

  • 1. 北京交通大学计算机科学与技术学院信息科学研究所 北京 100044||北京交通大学视觉智能交叉创新教育部国际合作联合实验室 北京 100044
  • 2. 中国科学院自动化研究所多模态人工智能系统全国重点实验室 北京 100190||中国科学院自动化研究所复杂系统管理与控制国家重点实验室 北京 100190||中国科学院大学 北京 101408
  • 折叠

摘要

Abstract

In real-world scenarios,images are often affected by multiple degradation factors simultaneously,such as low resolution,compression distortions,and noise.Existing methods typically focus on addressing a single type of degradation,making them less effective when dealing with complex compound degradations.To tackle the com-monly encountered compound degradation issue of low resolution and JPEG compression artifacts in real-world scenarios,we propose a gradient-guided joint JPEG compression artifact removal and super-resolution reconstruc-tion network.The proposed network adopts the super-resolution branch as the leading branch,which asymmetric-ally integrates features from the JPEG compression artifact removal and gradient-guided branches to achieve high-quality image reconstruction.The JPEG compression artifact removal branch focuses on suppressing compression artifacts,thereby alleviating the reconstruction burden on the leading branch.The gradient-guided branch accur-ately estimates image gradients to guide the leading branch in restoring fine details and textures.Experimental res-ults demonstrate that the proposed method improves the reconstruction quality of low-resolution JPEG-compressed images.

关键词

JPEG压缩/超分辨率/图像重建/梯度先验

Key words

JPEG compression/super-resolution/image reconstruction/gradient prior

引用本文复制引用

曹坪,林树冉,张淳杰,郑晓龙,赵耀..梯度引导的JPEG压缩图像超分辨率重建[J].自动化学报,2025,51(6):1261-1276,16.

基金项目

国家自然科学基金(62476021,72225011,72434005,62072026),多模态人工智能系统全国重点实验室开放课题基金(MAIS2024106)资助Supported by National Natural Science Foundation of China(62476021,72225011,72434005,62072026)and Open Projects Program of State Key Laboratory of Multimodal Artificial Intelli-gence Systems(MAIS2024106) (62476021,72225011,72434005,62072026)

自动化学报

OA北大核心

0254-4156

访问量0
|
下载量0
段落导航相关论文