| 注册
首页|期刊导航|中国电力|基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法

基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法

魏伟 余鹤 叶利 汪应春

中国电力2025,Vol.58Issue(6):172-179,8.
中国电力2025,Vol.58Issue(6):172-179,8.DOI:10.11930/j.issn.1004-9649.202409031

基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法

Low Voltage Substation Photovoltaic Ultra Short Term Power Prediction Method Based on FCM-SENet-TCN

魏伟 1余鹤 1叶利 1汪应春1

作者信息

  • 1. 国网湖北省电力有限公司营销服务中心(计量中心),湖北 武汉 443080
  • 折叠

摘要

Abstract

The existing methods for predicting photovoltaic power face problems such as excessive initial data redundancy and difficulty in extracting predictive features when facing distributed photovoltaics in low-voltage substations,resulting in insufficient prediction accuracy.Therefore,this article proposes a low-voltage photovoltaic ultra short term power prediction method based on FCM-SENet TCN.Firstly,the fuzzy C-means clustering algorithm(FCM)is used to fully explore multi-source meteorological environment data,clustering the initial dataset with different weather conditions to reduce initial data redundancy;Secondly,the Squeeze and Excitation Networks(SENet)will be integrated into the Temporal Convolutional Network(TCN)to efficiently extract complex features and improve prediction accuracy;Finally,the average absolute percentage error and root mean square error are used as evaluation indicators to assess the prediction results.The simulation results show that the proposed prediction method can fully utilize the initial meteorological data and make more accurate ultra short term power predictions based on the output characteristics of distributed photovoltaic generators in low-voltage substations.

关键词

低压台区/光伏功率预测/模糊C均值聚类

Key words

low voltage substation area/photovoltaic power prediction/fuzzy C-means clustering

引用本文复制引用

魏伟,余鹤,叶利,汪应春..基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法[J].中国电力,2025,58(6):172-179,8.

基金项目

国网湖北省电力有限公司科技项目(521543230003). This work is supported by State Grid Hubei Electric Power Co.,Ltd.Technology Project(No.521543230003). (521543230003)

中国电力

OA北大核心

1004-9649

访问量0
|
下载量0
段落导航相关论文