| 注册
首页|期刊导航|中国地质灾害与防治学报|RF-BP神经网络耦合模型在城市地面塌陷易发性评价中的应用

RF-BP神经网络耦合模型在城市地面塌陷易发性评价中的应用

于博帆 邢怀学 周丽玲 严嘉兴 张锦瑞 徐美君

中国地质灾害与防治学报2025,Vol.36Issue(3):160-170,11.
中国地质灾害与防治学报2025,Vol.36Issue(3):160-170,11.DOI:10.16031/j.cnki.issn.1003-8035.202311017

RF-BP神经网络耦合模型在城市地面塌陷易发性评价中的应用

Assessment of urban ground collapse susceptibility based on RF-BP neural network coupling model:A case study of typical areas in Hangzhou City

于博帆 1邢怀学 2周丽玲 3严嘉兴 4张锦瑞 4徐美君5

作者信息

  • 1. 中国地质调查局南京地质调查中心,江苏南京 210016||中国地质大学(武汉)地质调查研究院,湖北武汉 430074
  • 2. 中国地质调查局南京地质调查中心,江苏南京 210016||自然资源部城市地下空间探测评价技术创新中心,江苏南京 210016
  • 3. 浙江省地质院,浙江 杭州 310007||自然资源部浙江沿海城市地质安全野外科学观测研究站,浙江 杭州 310007
  • 4. 中国地质大学(武汉)地质调查研究院,湖北武汉 430074
  • 5. 自然资源部滨海城市地下空间地质安全重点实验室,山东青岛 266101
  • 折叠

摘要

Abstract

To improve the current situation where ground subsidence susceptibility assessment mainly relies on knowledge-driven models,this study explores the feasibility of incorporating data-driven models into the evaluation of urban ground subsidence.The study focused on a typical area in Hangzhou characterized by fill and silty soil.The selection of ground collapse indicators was conducted,followed by a correlation test.7 evaluation factors,including drainage pipeline density,social activity density,depth of underground confined water level,thickness of surface fill layer,distance from hidden rivers and beaches,depth of the saturated sand top plate,and thickness of the soft soil layer,were selected for assessing the susceptibility to ground subsidence in the study area.By comparing the random forest(RF)model,RF-I integrated model,and RF-BP neural network integrated model,it was found that the integrated model had higher accuracy in assessing the susceptibility of ground collapses subsidence in this study area compared to single models.Ultimately,the RF-BP neural network integrated model,which showed the best performance,was chosen for susceptibility assessment.The assessment results indicated a high correlation between the susceptibility zones and areas prone to ground subsidence,indicating good prediction performance and proving the potential application of data-driven models in evaluating the susceptibility of urban ground collapses.

关键词

地面塌陷灾害/易发性评价/机器学习模型/评价因子选取

Key words

ground collapse disaster/susceptibility assessment/machine learning model/selection of evaluation factors

分类

天文与地球科学

引用本文复制引用

于博帆,邢怀学,周丽玲,严嘉兴,张锦瑞,徐美君..RF-BP神经网络耦合模型在城市地面塌陷易发性评价中的应用[J].中国地质灾害与防治学报,2025,36(3):160-170,11.

基金项目

自然资源部滨海城市地下空间地质安全重点实验室开放基金项目(BHKF2022Z02) (BHKF2022Z02)

中国地质灾害与防治学报

1003-8035

访问量0
|
下载量0
段落导航相关论文