| 注册
首页|期刊导航|信息与控制|基于融合Swin Transformer网络的腰椎解剖区域自动分割方法

基于融合Swin Transformer网络的腰椎解剖区域自动分割方法

张英迪 史泽林 王欢 崔少千 张磊 刘嘉琛 单修祺 刘云鹏 赵恩波

信息与控制2025,Vol.54Issue(3):390-400,11.
信息与控制2025,Vol.54Issue(3):390-400,11.DOI:10.13976/j.cnki.xk.2024.0643

基于融合Swin Transformer网络的腰椎解剖区域自动分割方法

A Fusion Swin Transformer Network for Automated Segmentation of Lumbar Spine Anatomical Regions

张英迪 1史泽林 1王欢 2崔少千 2张磊 2刘嘉琛 2单修祺 2刘云鹏 1赵恩波1

作者信息

  • 1. 中国科学院光电信息处理重点实验室,辽宁沈阳 110016||中国科学院沈阳自动化研究所,辽宁沈阳 110016||中国科学院大学,北京 100049
  • 2. 中国医科大学附属盛京医院,辽宁沈阳 110004
  • 折叠

摘要

Abstract

Automated segmentation of the lumbar spine anatomical region plays a crucial role in the automated analysis pipeline of spinal images.Although classical convolutional neural networks can capture global image features,their inherent local priors and weight-sharing characteristics limit their ability to model long-range dependencies.To address these issues,a Swin Transformer hybrid network is proposed for the segmentation of the lumbar anatomical region.Firstly,the Swin Transformer hybrid network and multi-scale dilated convolution are combined as an encoder to a-chieve the hierarchical representation of global and local features.Additionally,a feature coupling module is designed,which couples the features of the Transformer and CNN in the channel and spatial dimensions,enhancing the model's local and long-distance modeling capabilities.Dealing with data scarcity problems,a dataset composed of 663 lumbar vertebrae CT images with voxel-lev-el labeled annotations is proposed.Experiments on this dataset show that the segmentation accura-cy of the proposed model surpasses that of typical medical image segmentation methods.Specifical-ly,the dice coefficient,the Hausdorff distance,and the average surface distance of the proposed model are 88.24%,14.48,and 0.997,respectively.Ablation experiments further verify the effec-tiveness of the proposed modules.

关键词

卷积神经网络/医学图像分割/Transformer/多尺度特征提取

Key words

CNN(convolutional neural network)/medical image segmentation/Transformer/multi-scale feature extraction

分类

计算机与自动化

引用本文复制引用

张英迪,史泽林,王欢,崔少千,张磊,刘嘉琛,单修祺,刘云鹏,赵恩波..基于融合Swin Transformer网络的腰椎解剖区域自动分割方法[J].信息与控制,2025,54(3):390-400,11.

基金项目

辽宁省自然科学基金项目(2022-KF-12-09) (2022-KF-12-09)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文