| 注册
首页|期刊导航|信息与控制|基于图像化特征提取和双层特征优选的变压器故障诊断

基于图像化特征提取和双层特征优选的变压器故障诊断

王凌云 李冉 杨波 李婷宜 李振华

信息与控制2025,Vol.54Issue(3):442-452,11.
信息与控制2025,Vol.54Issue(3):442-452,11.DOI:10.13976/j.cnki.xk.2024.0962

基于图像化特征提取和双层特征优选的变压器故障诊断

Transformer Fault Diagnosis Based on Image Feature Extraction and Dual-layer Feature Selection

王凌云 1李冉 1杨波 2李婷宜 1李振华1

作者信息

  • 1. 三峡大学电气与新能源学院,湖北宜昌 443002
  • 2. 国网武汉供电公司,湖北武汉 430015
  • 折叠

摘要

Abstract

Transformer fault diagnosis often lacks a unified criterion for feature selection,with redundant features reducing the diagnostic performance.To address this,we propose a novel transformer fault diagnosis method based on image feature extraction and dual-layer feature selection.Using dis-solved gas in transformer oil as the research object,we transform the concentration of dissolved gas into images using the Gramian Angular Field(GAF)method,followed by data equalization through image processing algorithms.Second,we transfer the feature parameters of the VGG16(Visual Geometric Group 16)algorithm to the GAF images to construct a fault diagnosis model that automates feature extraction.After comprehensively considering the importance score and correlation coefficient,we improve the random forest algorithm to filter important features and es-tablish a dual-layer feature preference model to enhance the fault diagnosis ability of power trans-formers.On this basis,the effectiveness of the proposed method is verified by four classifiers:lin-ear regression,support vector machine,multilayer perceptron,and stochastic gradient descent.The experimental results show that the visualization-based method extracts fault features more effec-tively than traditional approaches.After the dual-layer optimization of the features,the accuracy of transformer fault diagnosis is improved by 4.27%,11.2%,6.1%,and 10.97%,respectively,and the F1 value is improved by 4.53%,12.55%,6.08%and 11.1%respectively.The trans-former operation state is identified more accurately.

关键词

变压器/故障诊断/格拉姆角场(GAF)/VGG16网络/双层特征优选

Key words

transformer/fault diagnosis/Gramian angle field(GAF)/VGG16 network/dual-layer feature selection

分类

动力与电气工程

引用本文复制引用

王凌云,李冉,杨波,李婷宜,李振华..基于图像化特征提取和双层特征优选的变压器故障诊断[J].信息与控制,2025,54(3):442-452,11.

基金项目

国家自然科学基金项目(52277012) (52277012)

信息与控制

OA北大核心

1002-0411

访问量2
|
下载量0
段落导航相关论文