| 注册
首页|期刊导航|北京交通大学学报|基于多智能体强化学习的地铁接驳高铁客流疏散优化研究

基于多智能体强化学习的地铁接驳高铁客流疏散优化研究

孙峣 柯水平 贾宁 辛秀颖

北京交通大学学报2025,Vol.49Issue(4):19-28,10.
北京交通大学学报2025,Vol.49Issue(4):19-28,10.DOI:10.11860/j.issn.1673-0291.20240150

基于多智能体强化学习的地铁接驳高铁客流疏散优化研究

Study on optimization of metro-to-high-speed rail passenger flow dispersion based on multi-agent reinforcement learning

孙峣 1柯水平 2贾宁 3辛秀颖4

作者信息

  • 1. 大连理工大学 机械工程学院,辽宁 大连 116024||天津市政工程设计研究总院有限公司,天津 300051
  • 2. 天津市政工程设计研究总院有限公司,天津 300051
  • 3. 天津大学 管理与经济学部,天津 300072
  • 4. 天津科技大学 经济与管理学院,天津 300222
  • 折叠

摘要

Abstract

To address challenges such as passenger crowding,excessive waiting times,and inefficient use of transportation resources in metro-to-high-speed rail transfer scenarios,this study proposes an optimization method for metro-to-high-speed rail passenger flow dispersion based on Multi-Agent Re-inforcement Learning(MARL).The method dynamically adjusts metro timetables to enhance passen-ger dispersion efficiency,alleviate crowding,and improve the utilization of transportation resources.First,the metro-to-high-speed rail passenger flow dispersion optimization problem is formulated as a Markov game by integrating the spatiotemporal information of metro operations and the spatiotempo-ral characteristics of passenger transfers,with general state features,action space,and a reward func-tion specifically designed.Second,a multi-agent decision-making model is then developed using the Actor-Critic(AC)framework,and an asynchronous action coordination mechanism is introduced within a centralized training and distributed execution architecture to enhance training efficiency.Fi-nally,an optimization study is conducted using the Tianjin West railway station as a case study.Re-sults indicate that the proposed method significantly reduces passenger waiting times and improves metro operational efficiency.The average passenger waiting time decreases by 26.80%,while the av-erage metro operational efficiency increases by 14.11%.

关键词

多智能体强化学习/地铁接驳/客流疏散/异步动作协同机制

Key words

multi-agent reinforcement learning/metro connection/passenger flow dispersion/asyn-chronous action coordination mechanism

分类

交通工程

引用本文复制引用

孙峣,柯水平,贾宁,辛秀颖..基于多智能体强化学习的地铁接驳高铁客流疏散优化研究[J].北京交通大学学报,2025,49(4):19-28,10.

基金项目

国家自然科学基金(52372313) (52372313)

天津市人社局"131"创新团队项目(2019-44)National Natural Science Foundation of China(52372313) (2019-44)

The"131"Innovation Team Project of Tianjin Municipal Bureau of Human Resources and Social Security(2019-44) (2019-44)

北京交通大学学报

OA北大核心

1673-0291

访问量0
|
下载量0
段落导航相关论文