| 注册
首页|期刊导航|爆破器材|基于SSA-DBN的隧道爆破效果的预测

基于SSA-DBN的隧道爆破效果的预测

施龙 崔大勇 李龙 陈迪 周长春

爆破器材2025,Vol.54Issue(4):38-45,8.
爆破器材2025,Vol.54Issue(4):38-45,8.DOI:10.3969/j.issn.1001-8352.2025.04.007

基于SSA-DBN的隧道爆破效果的预测

Prediction of Tunnel Blasting Outcomes Based on SSA-DBN

施龙 1崔大勇 1李龙 2陈迪 3周长春1

作者信息

  • 1. 中铁建大桥工程局集团第一工程有限公司(辽宁 大连,116000)
  • 2. 西安建筑科技大学土木工程学院(陕西 西安,710055)
  • 3. 湖北交投宜楚建设管理有限公司(湖北 宜昌,443200)
  • 折叠

摘要

Abstract

A prediction study on tunnel blasting outcomes was conducted using the Qilinguan Tunnel project as an example.SSA-DBN prediction model based on sparrow search algorithm(SSA)optimized deep belief network(DBN)was used.Using the selected eight parameters that affect the blasting outcomes as input indicators,and the average absolute er-ror EMA,mean square error EMS,and determination coefficient of R2 as evaluation indicators,a comparative evaluation was conducted on the output indicators(maximum linear over excavation,under excavation and fragmentation)of DBN model,principal component analysis(PCA)optimized DBN model(PCA-DBN),and SSA-DBN model.The results show that R2 of the maximum linear over excavation,under excavation,and fragmentation of SSA-DBN model is 0.997 3,0.997 7,and 0.998 1,respectively.EMA is 0.461 0,0.338 0,and 0.360 2,respectively.EMS is 0.297 5,0.178 2,and 0.175 3,re-spectively.SSA-DBN model has the highest fitting degree between predicted values and actual values,followed by DBN model,and PCA-DBN model has the lowest.The sensitivity index r2 of input parameters to blasting outcomes is mainly be-tween 0.6 and 0.7.The accuracy and stability of SSA-DBN model have been verified.

关键词

爆破工程/DBN神经网络/麻雀搜索算法(SSA)/爆破效果预测

Key words

blasting engineering/DBN neural network/sparrow search algorithm/prediction of blasting outcome

分类

矿业与冶金

引用本文复制引用

施龙,崔大勇,李龙,陈迪,周长春..基于SSA-DBN的隧道爆破效果的预测[J].爆破器材,2025,54(4):38-45,8.

基金项目

陕西省创新能力支撑计划(2020TD-005) (2020TD-005)

爆破器材

OA北大核心

1001-8352

访问量0
|
下载量0
段落导航相关论文