| 注册
首页|期刊导航|重庆大学学报|基于机器学习的汽车智能座舱告警筛选系统

基于机器学习的汽车智能座舱告警筛选系统

张莹 袁海兵 何祺 姜立标 陈毅锋 陈桥芳

重庆大学学报2025,Vol.48Issue(8):99-110,12.
重庆大学学报2025,Vol.48Issue(8):99-110,12.DOI:10.11835/j.issn.1000-582X.2025.08.009

基于机器学习的汽车智能座舱告警筛选系统

Machine learning-based intelligent cabin alert filtering system for vehicles

张莹 1袁海兵 2何祺 3姜立标 4陈毅锋 5陈桥芳6

作者信息

  • 1. 星河智联汽车科技有限公司,广州 511400
  • 2. 广汽能源科技有限公司,广州 510800
  • 3. 广汽丰田汽车有限公司,广州 511455
  • 4. 广州城市理工学院机械工程学院与机器人学院,广州 510800||华南理工大学 机械与汽车工程学院 广州 510641
  • 5. 重庆理工大学 车辆工程学院,重庆 400054
  • 6. 广州城市理工学院工程研究院,广州 510800
  • 折叠

摘要

Abstract

This study presents a machine learning-based intelligent cabin alert filtering system for vehicles aiming to address safety risks caused by excessive and redundant alarm sources.To overcome limitations in current systems,such as alarm redundancy and inaccurate classifications,a hybrid selection strategy is proposed that combines manual expert filtering with a convolutional neural network(CNN)model.The system integrates operational data from various devices,applying manual heuristics to eliminate likely false signals and employing the CNN model for robust feature extraction and precise classification.Experimental results show that the CNN model achieves a classification accuracy of 89.07%on the test dataset.When combined with manual filtering,the overall selection accuracy of alarm signals reaches 99.998%,significantly surpassing the conventional VAS system(90%).These results validate the proposed method's effectiveness in filtering alarm information.Future research will focus on expanding training datasets,optimizing model parameters,and improving text pre-processing techniques to further enhance the overall system performance.

关键词

机器学习技术/智能座舱告警/告警源/CNN

Key words

machine learning/intelligent cabin alarms/alarm filtering/CNN

分类

交通工程

引用本文复制引用

张莹,袁海兵,何祺,姜立标,陈毅锋,陈桥芳..基于机器学习的汽车智能座舱告警筛选系统[J].重庆大学学报,2025,48(8):99-110,12.

基金项目

国家自然科学基金(61602345).Supported by National Natural Science Foundation of China(61602345). (61602345)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文