| 注册
首页|期刊导航|重庆科技大学学报(自然科学版)|基于多尺度特征融合的改进YOLOv8n车辆与行人目标检测算法

基于多尺度特征融合的改进YOLOv8n车辆与行人目标检测算法

雷亮 陈小庆 周华勇 徐山雯 陈毅 刘学涵 赵锦

重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):57-69,13.
重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):57-69,13.DOI:10.19406/j.issn.2097-4531.2025.03.006

基于多尺度特征融合的改进YOLOv8n车辆与行人目标检测算法

Improved YOLOv8n Vehicle and Pedestrian Object Detection Algorithm Based on Multi-Scale Feature Fusion

雷亮 1陈小庆 1周华勇 1徐山雯 1陈毅 1刘学涵 1赵锦1

作者信息

  • 1. 重庆科技大学计算机科学与工程学院,重庆 401331
  • 折叠

摘要

Abstract

BF-YOLOv8n,a multi-scale feature fusion-based vehicle and pedestrian target detection algorithm,is proposed to address the issue of detection accuracy degradation in the YOLOv8n algorithm caused by significant var-iations in image sizes and target scales.Firstly,CA-SPPF,an advanced selective feature extraction module,is de-signed in the spatial pooling layer to achieve multi-level fusion and enhance the extraction capabilities of features at different scales.Secondly,a 160×160 pedestrian small-target detection head is designed to improve the model's detection accuracy for small targets.Thirdly,a bidirectional fusion feature pyramid based on four detection heads(BiFPN-4H),is proposed to enhance the model's adaptability and detection accuracy for objects at different scales.Lastly,EIoU is utilized as the bounding box loss function to enhance the model's target localization accura-cy.Experimental results on the VOC dataset show that,compared with the YOLOv8n model,the precision,recall,and average precision mean of the BF-YOLOv8n model have been improved by 5.7,5.1 and 5.0 percentage points,respectively.Validation on the COCO dataset further demonstrates that the BF-YOLOv8n model has achieved enhancements in all performance metrics,fully testifying its excellent generalization and robustness.

关键词

高级筛选特征提取/双向特征融合/YOLOv8n算法/多尺度特征/小目标检测头

Key words

advanced screening feature extraction/bi-directional feature fusion/YOLOv8n algorithm/multi-scale features/small target detection head

分类

信息技术与安全科学

引用本文复制引用

雷亮,陈小庆,周华勇,徐山雯,陈毅,刘学涵,赵锦..基于多尺度特征融合的改进YOLOv8n车辆与行人目标检测算法[J].重庆科技大学学报(自然科学版),2025,27(3):57-69,13.

基金项目

2021年重庆市属本科高校与中国科学院所属院所合作项目"工业互联网内生安全关键技术研究与协同创新"(HZ2021015) (HZ2021015)

重庆市教委科学技术研究项目"基于YOLO-Pose姿态特征检测融合时序的独居老人跌倒识别算法研究"(KJQN202303305) (KJQN202303305)

重庆科技大学学报(自然科学版)

1673-1980

访问量0
|
下载量0
段落导航相关论文