| 注册
首页|期刊导航|重庆科技大学学报(自然科学版)|基于KAN-BiLSTM模型的股票指数预测研究

基于KAN-BiLSTM模型的股票指数预测研究

赵涛 赵迎庆

重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):70-77,8.
重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):70-77,8.DOI:10.19406/j.issn.2097-4531.2025.03.007

基于KAN-BiLSTM模型的股票指数预测研究

Research on Stock Index Prediction Method Based on KAN-BiLSTM Model

赵涛 1赵迎庆1

作者信息

  • 1. 安徽财经大学管理科学与工程学院,安徽 蚌埠 233030
  • 折叠

摘要

Abstract

To address the limitations of current neural networks in terms of accuracy and generalization capability for long-term stock index prediction,a novel model(KAN-BiLSTM)that integrates a KAN(Kolmogorov-Arnold net-work)with learnable activation functions and a Bidirectional Long Short-Term Memory(BiLSTM)network is pro-posed.This model utilizes BiLSTM to extract bidirectional temporal features of stock data and enhances the model's expressive power through the strong nonlinear function approximation ability of KAN,thereby improving the overall prediction performance.Experiments are conducted on multiple long-term stock datasets,and the results show that KAN-BiLSTM model improves the prediction accuracy by an average of approximately 5.68%compared to existing BiLSTM model,and also demonstrates better generalization ability,verifying its effectiveness in stock index predic-tion tasks.

关键词

神经网络/KAN模型/BiLSTM模型/长跨度股票数据

Key words

neural network/KAN model/BiLSTM model/long-span stock data

分类

信息技术与安全科学

引用本文复制引用

赵涛,赵迎庆..基于KAN-BiLSTM模型的股票指数预测研究[J].重庆科技大学学报(自然科学版),2025,27(3):70-77,8.

基金项目

安徽省高校自然科学重点项目"跨社交网络用户识别技术研究"(KJ2021A0483) (KJ2021A0483)

重庆科技大学学报(自然科学版)

1673-1980

访问量0
|
下载量0
段落导航相关论文