| 注册
首页|期刊导航|重庆科技大学学报(自然科学版)|基于提示学习的突发事件新闻文本层次多标签分类方法研究

基于提示学习的突发事件新闻文本层次多标签分类方法研究

汪波 余茂楠 唐伟 张万宏 马代强 邓松

重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):78-85,8.
重庆科技大学学报(自然科学版)2025,Vol.27Issue(3):78-85,8.DOI:10.19406/j.issn.2097-4531.2025.03.008

基于提示学习的突发事件新闻文本层次多标签分类方法研究

Research on Hierarchical Multi-Label Classification Method for Emergency News Texts Based on Prompt Learning

汪波 1余茂楠 1唐伟 1张万宏 1马代强 1邓松2

作者信息

  • 1. 重庆天然气储运有限公司,重庆 401139
  • 2. 西南油气田分公司重庆气矿,重庆 401120
  • 折叠

摘要

Abstract

The classification of emergency events serves as a crucial prerequisite for emergency response operations,directly determining the speed and effectiveness of response measures.To effectively address the problem of classifi-cation accuracy caused by imbalanced categories in emergency news texts,this study proposes a hierarchical multi-label classification method for emergency news texts based on prompt learning.By constructing prompt templates upon the ERNIE pre-trained model,we utilize the masked language model to train predicted labels and achieve la-bel mapping to match existing classification labels.This approach effectively mitigates challenges stemming from limited annotated data and data imbalance in the emergency domain.Experimental results demonstrate that the pro-posed model achieves accuracy and macro-F1 scores of 0.973 9 and 0.933 7 respectively,outperforming baseline models such as ChineseBERT and PET.

关键词

提示学习/突发事件/新闻文本分类/层次多标签

Key words

prompt learning/emergency events/news texts classification/hierarchical multi-label

分类

信息技术与安全科学

引用本文复制引用

汪波,余茂楠,唐伟,张万宏,马代强,邓松..基于提示学习的突发事件新闻文本层次多标签分类方法研究[J].重庆科技大学学报(自然科学版),2025,27(3):78-85,8.

重庆科技大学学报(自然科学版)

1673-1980

访问量0
|
下载量0
段落导航相关论文