| 注册
首页|期刊导航|福建电脑|应用鲁棒卡尔曼滤波的车道线跟踪方法

应用鲁棒卡尔曼滤波的车道线跟踪方法

杨勤峰 金贵阳 于磊磊 孙德盟 秦建波

福建电脑2025,Vol.41Issue(7):12-16,5.
福建电脑2025,Vol.41Issue(7):12-16,5.DOI:10.16707/j.cnki.fjpc.2025.07.003

应用鲁棒卡尔曼滤波的车道线跟踪方法

Lane Line Tracking Method Using Robust Kalman Filter

杨勤峰 1金贵阳 1于磊磊 1孙德盟 1秦建波2

作者信息

  • 1. 宁波职业技术学院智能装备研究所 浙江 宁波 315800
  • 2. 上海商汤科技开发有限公司智能驾驶部门 上海 201600
  • 折叠

摘要

Abstract

To avoid detection errors caused by factors such as obstruction and wear of lane line parameters,this paper proposes a lane line tracking method using robust Kalman filtering.This method is based on the extracted discrete point data of lane markings and uses the cyclotron curve equation to construct a lane marking parameter model.Derive the observation equation of Kalman filter from uniformly distributed scatter data obtained through sampling preprocessing.Simultaneously combining the motion state data of the vehicle,derive the prediction equation of Kalman filter.And based on the residuals of the observation equation,adaptively calculate the covariance matrix of the system process noise.The experimental results show that the average lateral error of the left and right lane lines calculated by the method in this article is less than 9cm,and the maximum value does not exceed 25cm,which meets the functional requirements of intelligent driving scenarios.

关键词

车道线跟踪/卡尔曼滤波/智能驾驶

Key words

Lane Line Tracking/Kalman Filter/Intelligent Driving

分类

信息技术与安全科学

引用本文复制引用

杨勤峰,金贵阳,于磊磊,孙德盟,秦建波..应用鲁棒卡尔曼滤波的车道线跟踪方法[J].福建电脑,2025,41(7):12-16,5.

基金项目

本文得到宁波职业技术学院2025年度校级课题(No.NZ25018)资助. (No.NZ25018)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文