首页|期刊导航|福建电脑|DBN神经网络的异常心音检测方法研究

DBN神经网络的异常心音检测方法研究OA

Research on Abnormal Heart Sound Detection Method Based on DBN Neural Network

中文摘要英文摘要

针对现有异常心音检测方法模型复杂、特征数据量大、难以部署在计算资源有限的移动设备上的问题,本文提出了一种基于隐半马尔可夫模型和深度信念网络的轻量化异常心音检测算法.利用HSMM对心音信号进行精确分割,并从时间、幅度等多个维度提取特征值,从而降低特征数据量.实验结果表明,该算法的准确率达到 0.886,与主流算法相比,在保持相近准确度的同时,识别速度提升了34倍.

In response to the problems of complex models,large amounts of feature data,and difficulty in deploying on mobile devices with limited computing resources in existing methods for detecting abnormal heart sounds,this paper proposes a lightweight abnormal heart sound detection algorithm based on hidden semi Markov models and deep belief networks.Using HSMM for precise segmentation of heart sound signals and extracting feature values from multiple dimensions such as time and amplitude reduces the amount of feature data.The experimental results show that the accuracy of this algorithm reaches 0.886,which is 34 times faster than mainstream algorithms while maintaining similar accuracy.

马启良

枣庄学院光电工程学院 山东 枣庄 277160

信息技术与安全科学

异常心音检测轻量化算法智能穿戴设备

Abnormal Heart Sound DetectionLightweight AlgorithmSmart Wearable Devices

《福建电脑》 2025 (7)

22-26,5

10.16707/j.cnki.fjpc.2025.07.005

评论