| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|基于K-means和Adam-LSTM的机场进场航迹预测研究

基于K-means和Adam-LSTM的机场进场航迹预测研究

黎宗孝 张健 罗鑫悦 赵嶷飞 卢飞

广西师范大学学报(自然科学版)2025,Vol.43Issue(4):15-23,9.
广西师范大学学报(自然科学版)2025,Vol.43Issue(4):15-23,9.DOI:10.16088/j.issn.1001-6600.2024061404

基于K-means和Adam-LSTM的机场进场航迹预测研究

Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM

黎宗孝 1张健 2罗鑫悦 2赵嶷飞 2卢飞2

作者信息

  • 1. 中国民航大学 空中交通管理学院,天津 300300||民航广西空管分局,广西 南宁 530048
  • 2. 中国民航大学 空中交通管理学院,天津 300300
  • 折叠

摘要

Abstract

It is the current mode of air traffic management that flight crews fly according to the instructions from air traffic controllers.With the increase of the number of flights,in order to effectively improve the efficiency of air traffic operation and reduce the workload of controllers,the development of intelligent air traffic management based on track prediction has become a new topic.Aiming at the research of flight track prediction technology,a two-stage flight track prediction method is put forward innovatively in this paper,which includes classification and then prediction.Firstly,K-means is used to cluster and classify the flight track based on the data of a certain airport.Next,Adam-LSTM deep learning model is constructed for each type of approach track,and high quality track prediction is realized.The results show that,compared with the traditional prediction model,the track prediction effect is greatly improved.The research results can provide technical support for intelligent air traffic management and abnormal track recognition.

关键词

空中交通/工作负荷/航迹预测/深度学习

Key words

air traffic/working load/track prediction/deep learning

分类

航空航天

引用本文复制引用

黎宗孝,张健,罗鑫悦,赵嶷飞,卢飞..基于K-means和Adam-LSTM的机场进场航迹预测研究[J].广西师范大学学报(自然科学版),2025,43(4):15-23,9.

基金项目

国家自然科学基金(52272356) (52272356)

中国民航大学创新训练项目(202310059166) (202310059166)

中央高校基本科研业务费项目(3122022095) (3122022095)

广西师范大学学报(自然科学版)

OA北大核心

1001-6600

访问量0
|
下载量0
段落导航相关论文