| 注册
首页|期刊导航|福建电脑|生物序列k-mer并行聚类优化研究

生物序列k-mer并行聚类优化研究

李莉 赵佳旭 徐彭娜

福建电脑2025,Vol.41Issue(7):32-36,5.
福建电脑2025,Vol.41Issue(7):32-36,5.DOI:10.16707/j.cnki.fjpc.2025.07.007

生物序列k-mer并行聚类优化研究

Optimization of Parallel Clustering for Biological Sequence K-mers

李莉 1赵佳旭 1徐彭娜1

作者信息

  • 1. 福州职业技术学院信息工程学院 福州 350100
  • 折叠

摘要

Abstract

To improve the efficiency of biological sequence clustering,this paper proposes a parallel clustering optimization method based on k-mer.By converting biological sequences into binary encoding,constructing feature vectors using k-mer frequency,and utilizing batch processing and parallelization techniques to accelerate the feature extraction process,MiniBatch K-Means algorithm is used for clustering.The experimental results show that the model proposed in this paper significantly improves clustering speed while ensuring clustering accuracy,providing an effective solution for large-scale biological sequence analysis.

关键词

生物序列/聚类/K-Means算法

Key words

Biological Sequence/Clustering/K-means Algorithm

分类

信息技术与安全科学

引用本文复制引用

李莉,赵佳旭,徐彭娜..生物序列k-mer并行聚类优化研究[J].福建电脑,2025,41(7):32-36,5.

基金项目

本文得到福州职业技术学院科研项目(No.FZYKJJJYB202304)资助. (No.FZYKJJJYB202304)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文