| 注册
首页|期刊导航|福建电脑|车联网抗干扰资源分配的DRL方法

车联网抗干扰资源分配的DRL方法

王永龙

福建电脑2025,Vol.41Issue(7):37-41,5.
福建电脑2025,Vol.41Issue(7):37-41,5.DOI:10.16707/j.cnki.fjpc.2025.07.008

车联网抗干扰资源分配的DRL方法

DRL-Based Anti-Jamming Resource Allocation for Vehicular Networks

王永龙1

作者信息

  • 1. 福州大学电气工程与自动化学院 福州 350108
  • 折叠

摘要

Abstract

To enhance the security and efficiency of inter vehicle communication and effectively combat malicious interference attacks,this paper proposes a multi-agent deep reinforcement learning scheme based on adversarial dual deep recursive Q-network.By integrating cognitive radio technology to optimize resource allocation in V2V communication,the transmission success rate of V2V links is maximized in the event of malicious interference,ensuring efficient data transmission even when the network is subjected to malicious interference.The simulation results have verified that the proposed algorithm has good convergence,significantly improving the transmission success rate and anti-interference performance of V2V links.

关键词

认知无线电/车联网/抗干扰/资源分配/深度强化学习

Key words

Cognitive Radio/Vehicular Networks/Anti-Jamming/Deep Reinforcement Learning

分类

信息技术与安全科学

引用本文复制引用

王永龙..车联网抗干扰资源分配的DRL方法[J].福建电脑,2025,41(7):37-41,5.

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文