| 注册
首页|期刊导航|机械科学与技术|加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断

加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断

仝兆景 孟令强 唐晋豪 吴鹏

机械科学与技术2025,Vol.44Issue(7):1151-1158,8.
机械科学与技术2025,Vol.44Issue(7):1151-1158,8.DOI:10.13433/j.cnki.1003-8728.20230276

加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断

Bearing Fault Diagnosis Combined with Weighted Refined Composite Multiscale Dispersion Entropy and Improved Bayesian Networks

仝兆景 1孟令强 1唐晋豪 1吴鹏1

作者信息

  • 1. 河南理工大学 电气学院,河南 焦作 454003
  • 折叠

摘要

Abstract

In order to extract the fault features of bearing vibration signals more accurately,weighted fine composite multi-scale spread entropy(wRCMDE)was introduced into bearing fault feature extraction.On this basis,a rolling bearing fault diagnosis method based on wRCMDE and improved Bayesian network was proposed.By calculating wRCMDE of different fault vibration signals and selecting multiple wRCMDE values at appropriate scale as feature vectors,feature samples were formed and input into the Bayesian network optimized by the improved firefly algorithm for fault classification and recognition.Through the analysis of experimental data,the proposed method is compared with the fault feature extraction method based on multiscale dispersal entropy and refined composite multiscale dispersal entropy.Experimental results show that this method can identify the fault types of rolling bearings more accurately,and the recognition rate is higher.

关键词

加权精细复合多尺度散布熵/萤火虫算法/贝叶斯网络/故障诊断

Key words

weighted refined composite multiscale dispersion entropy/firefly algorithm/Bayesian network/fault diagnosis

分类

机械制造

引用本文复制引用

仝兆景,孟令强,唐晋豪,吴鹏..加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断[J].机械科学与技术,2025,44(7):1151-1158,8.

基金项目

国家自然科学基金项目(U1504623)、河南省软科学研究计划(252400410717)、河南省高等教育教学改革研究与实践项目(研究生教育类)(2023SJGLX144Y)及河南理工大学研究生教改项目(2023YJ20) (U1504623)

机械科学与技术

OA北大核心

1003-8728

访问量0
|
下载量0
段落导航相关论文