| 注册
首页|期刊导航|计量学报|基于自适应时空同步建模的交通流预测

基于自适应时空同步建模的交通流预测

叶宝林 戴本岙 苗永超 李灵犀 王翔 吴维敏

计量学报2025,Vol.46Issue(6):802-812,11.
计量学报2025,Vol.46Issue(6):802-812,11.DOI:10.3969/j.issn.1000-1158.2025.06.04

基于自适应时空同步建模的交通流预测

Adaptive Spatio-temporal Synchronous Modeling Based Traffic Flow Prediction

叶宝林 1戴本岙 2苗永超 2李灵犀 3王翔 4吴维敏5

作者信息

  • 1. 嘉兴大学,浙江 嘉兴 314001||嘉兴数字城市实验室有限公司,浙江 嘉兴 314001
  • 2. 嘉兴大学,浙江 嘉兴 314001||浙江理工大学,浙江 杭州 310018
  • 3. 普渡大学,美国 印第安纳 47907
  • 4. 嘉兴数字城市实验室有限公司,浙江 嘉兴 314001
  • 5. 浙江大学 工业控制技术全国重点实验室,浙江 杭州 310027
  • 折叠

摘要

Abstract

In order to accurately capture the spatio-temporal correlation between different traffic nodes in the road network,a traffic flow prediction method based on adaptive spatio-temporal synchronization modeling was proposed.Firstly,the global node embedding and the bias of different sub-graphs were constructed to generate multiple sub-spatiotemporal graphs that are both related and different,and the different sub-spatiotemporal graphs were spliced to generate a static adaptive spatio-temporal graph,which describes the spatio-temporal correlation between different nodes in the road network from different dimensions.In addition,in order to better model the dynamic spatio-temporal relationship between different nodes,a new dynamic adaptive spatio-temporal synchronization graph construction method was designed,which can effectively describe the dynamic spatio-temporal relationship between different traffic nodes and reduce the computational complexity of the dynamic spatio-temporal graph.Finally,three public datasets derived from a real-world road network,were utilized for testing.The results of the experiments demonstrated that:when compared with nine baseline methods,including LSTM,DCRNN,STGCN,ASTGCN,GWN,STSGCN,STFGNN,STGODE,and S2TAT,the proposed method exhibited superior prediction accuracy.Specifically,on the PEMS08 dataset,in comparison with the optimal baseline method S2TAT,the proposed method achieved reductions of 8.65%,9.25%and 6.04%in mean absolute error(MAE)eMAE,mean absolute percentage error(MAPE)eMAPE and root mean square error(RMSE)eRMSE,respectively.

关键词

智能交通系统/交通流量预测/图神经网络/自适应时空图/时空同步建模/深度学习

Key words

intelligent transportation systems/traffic flow prediction/graph neural network/adaptive spatio-temporal graph/spatio-temporal synchronous modeling/deep learning

分类

通用工业技术

引用本文复制引用

叶宝林,戴本岙,苗永超,李灵犀,王翔,吴维敏..基于自适应时空同步建模的交通流预测[J].计量学报,2025,46(6):802-812,11.

基金项目

嘉兴市应用性基础研究项目(2023AY11034) (2023AY11034)

浙江省自然科学基金(LTGS23F030002) (LTGS23F030002)

国家自然科学基金(61603154) (61603154)

计量学报

OA北大核心

1000-1158

访问量0
|
下载量0
段落导航相关论文