| 注册
首页|期刊导航|机械科学与技术|增强MOMEDA算法及在滚动轴承微弱故障诊断中的应用研究

增强MOMEDA算法及在滚动轴承微弱故障诊断中的应用研究

盛嘉玖 陈果 刘曜宾 贺志远 王浩 尉询楷

机械科学与技术2025,Vol.44Issue(6):921-928,8.
机械科学与技术2025,Vol.44Issue(6):921-928,8.DOI:10.13433/j.cnki.1003-8728.20230253

增强MOMEDA算法及在滚动轴承微弱故障诊断中的应用研究

Enhanced MOMEDA Algorithm and Application in Weak Fault Diagnosis of Rolling Bearings

盛嘉玖 1陈果 2刘曜宾 2贺志远 1王浩 3尉询楷3

作者信息

  • 1. 南京航空航天大学民航学院,南京 211106
  • 2. 南京航空航天大学通用航空与飞行学院,江苏溧阳 213300
  • 3. 北京航空工程技术研究中心 北京 100076
  • 折叠

摘要

Abstract

Aiming at the improvement of Multipoint optimal minimum entropy deconvolution adjusted(MOMEDA),an enhanced MOMEDA algorithm is proposed and applied to the weak fault diagnosis of rolling bearings.Firstly,a frequency domain index that can reflect the filtering effect is constructed.It is found that the filtering effect of MOMEDA depends on the fault period rather than the filtering length.Then,a method combining autocorrelation,envelope demodulation and multipoint kurtosis(MKurt)is proposed to determine the optimal fault period.The rolling bearing fault and normal data of the external casing measuring point are used for verification.The results show that the method can effectively overcome the problem that the traditional MOMEDA algorithm is difficult to select the fault period,and can adaptively extract the more significant fault period.Finally,compared with the MED-based collaborative diagnosis method,it is found that MOMEDA focuses on determining the fault cycle,while the MED-based collaborative diagnosis method focuses on selecting the filter length.After the fault cycle is correctly extracted,the MOMEDA filtering effect is better.

关键词

滚动轴承/MOMEDA/MKurt/故障诊断/特征增强

Key words

rolling bearings/MOMEDA/MKurt/fault diagnosis/feature enhancement

分类

航空航天

引用本文复制引用

盛嘉玖,陈果,刘曜宾,贺志远,王浩,尉询楷..增强MOMEDA算法及在滚动轴承微弱故障诊断中的应用研究[J].机械科学与技术,2025,44(6):921-928,8.

基金项目

国家自然科学基金项目(52272436)、国家科技重大专项计划(J2019-IV-004-0071)及江苏省研究生科研与实践创新计划(KYCX200211) (52272436)

机械科学与技术

OA北大核心

1003-8728

访问量1
|
下载量0
段落导航相关论文